Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 971 - 980 of 3,496 for document (4.27 seconds)

  1. 7.6. Random Projection — scikit-learn 1.8...

    The sklearn.random_projection module implements a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional varianc...
    scikit-learn.org/stable/modules/random_projection.html
    Mon Jan 19 11:28:25 GMT 2026
      48.5K bytes
      Cache
     
  2. Demo of HDBSCAN clustering algorithm — sc...

    In this demo we will take a look at cluster.HDBSCAN from the perspective of generalizing the cluster.DBSCAN algorithm. We’ll compare both algorithms on specific datasets. Finally we’ll evaluate HDB...
    scikit-learn.org/stable/auto_examples/cluster/plot_hdbscan.html
    Mon Jan 19 11:28:23 GMT 2026
      129.1K bytes
      2 views
      Cache
     
  3. Recognizing hand-written digits — scikit-...

    This example shows how scikit-learn can be used to recognize images of hand-written digits, from 0-9. Digits dataset: The digits dataset consists of 8x8 pixel images of digits. The images attribute...
    scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
    Mon Jan 19 11:28:24 GMT 2026
      101.7K bytes
      Cache
     
  4. Sparse coding with a precomputed dictionary &#8...

    Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the SparseCoder estimator. The Ricker (also known as Mexican hat ...
    scikit-learn.org/stable/auto_examples/decomposition/plot_sparse_coding.html
    Mon Jan 19 11:28:23 GMT 2026
      107.1K bytes
      Cache
     
  5. Density Estimation for a Gaussian mixture &#821...

    Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. Total running time of the script:(0 minutes 0.121 sec...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html
    Mon Jan 19 11:28:23 GMT 2026
      92.9K bytes
      Cache
     
  6. Lasso on dense and sparse data — scikit-l...

    We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. Comparing the two Lasso implementations on Dense data:...
    scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_dense_vs_sparse_data.html
    Mon Jan 19 11:28:25 GMT 2026
      97.1K bytes
      Cache
     
  7. Map data to a normal distribution — sciki...

    This example demonstrates the use of the Box-Cox and Yeo-Johnson transforms through PowerTransformer to map data from various distributions to a normal distribution. The power transform is useful a...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_map_data_to_normal.html
    Mon Jan 19 11:28:24 GMT 2026
      104.9K bytes
      Cache
     
  8. Neighborhood Components Analysis Illustration &...

    This example illustrates a learned distance metric that maximizes the nearest neighbors classification accuracy. It provides a visual representation of this metric compared to the original point sp...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nca_illustration.html
    Mon Jan 19 11:28:24 GMT 2026
      100.1K bytes
      Cache
     
  9. scikit-learn: machine learning in Python &#8212...

    Skip to main content Back to top Ctrl + K scikit-learn Machine Learning in Python Getting Started Release Highlights ...
    scikit-learn.org/stable/index.html
    Mon Jan 19 11:28:23 GMT 2026
      32.3K bytes
      Cache
     
  10. 14. External Resources, Videos and Talks &#8212...

    The scikit-learn MOOC: If you are new to scikit-learn, or looking to strengthen your understanding, we highly recommend the scikit-learn MOOC (Massive Open Online Course). The MOOC, created and mai...
    scikit-learn.org/stable/presentations.html
    Mon Jan 19 11:28:23 GMT 2026
      33.9K bytes
      Cache
     
Back to Top