Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 971 - 980 of 1,699 for document (0.92 sec)

  1. Test with permutations the significance of a cl...

    This example demonstrates the use of permutation_test_score to evaluate the significance of a cross-validated score using permutations. Dataset: We will use the Iris plants dataset, which consists ...
    scikit-learn.org/stable/auto_examples/model_selection/plot_permutation_tests_for_classification.html
    Thu Jul 03 11:42:05 UTC 2025
      100.9K bytes
      Cache
     
  2. Blind source separation using FastICA — scikit-...

    An example of estimating sources from noisy data. Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 micro...
    scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.html
    Thu Jul 03 11:42:06 UTC 2025
      97K bytes
      Cache
     
  3. precision_recall_curve — scikit-learn 1.7.0 doc...

    Gallery examples: Visualizations with Display Objects Precision-Recall
    scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
    Thu Jul 03 11:42:05 UTC 2025
      115.3K bytes
      Cache
     
  4. mutual_info_score — scikit-learn 1.7.0 document...

    Gallery examples: Adjustment for chance in clustering performance evaluation
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
    Thu Jul 03 11:42:05 UTC 2025
      111.7K bytes
      Cache
     
  5. median_absolute_error — scikit-learn 1.7.0 docu...

    Gallery examples: Effect of transforming the targets in regression model Common pitfalls in the interpretation of coefficients of linear models
    scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html
    Thu Jul 03 11:42:06 UTC 2025
      112.4K bytes
      Cache
     
  6. check_random_state — scikit-learn 1.7.0 documen...

    Gallery examples: Empirical evaluation of the impact of k-means initialization MNIST classification using multinomial logistic + L1 Manifold Learning methods on a severed sphere Isotonic Regression...
    scikit-learn.org/stable/modules/generated/sklearn.utils.check_random_state.html
    Thu Jul 03 11:42:05 UTC 2025
      110.1K bytes
      Cache
     
  7. non_negative_factorization — scikit-learn 1.7.0...

    Skip to main content Back to top Ctrl + K GitHub Choose version non_negative_factorization # sklearn.decomposition. n...
    scikit-learn.org/stable/modules/generated/sklearn.decomposition.non_negative_factorization.html
    Thu Jul 03 11:42:06 UTC 2025
      121.7K bytes
      Cache
     
  8. enable_iterative_imputer — scikit-learn 1.7.0 d...

    Enables IterativeImputer The API and results of this estimator might change without any deprecation cycle. Importing this file dynamically sets IterativeImputer as an attribute of the impute module:
    scikit-learn.org/stable/modules/generated/sklearn.experimental.enable_iterative_imputer.html
    Thu Jul 03 11:42:06 UTC 2025
      104.6K bytes
      Cache
     
  9. fetch_lfw_people — scikit-learn 1.7.0 documenta...

    Gallery examples: Faces recognition example using eigenfaces and SVMs
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_people.html
    Thu Jul 03 11:42:05 UTC 2025
      114.8K bytes
      Cache
     
  10. add_dummy_feature — scikit-learn 1.7.0 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version add_dummy_feature # sklearn.preprocessing. add_dummy_...
    scikit-learn.org/stable/modules/generated/sklearn.preprocessing.add_dummy_feature.html
    Thu Jul 03 11:42:05 UTC 2025
      105.8K bytes
      Cache
     
Back to top