Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 941 - 950 of 1,682 for document (0.36 sec)

  1. sklearn.pipeline — scikit-learn 1.6.1 documenta...

    Utilities to build a composite estimator as a chain of transforms and estimators. User guide. See the Pipelines and composite estimators section for further details.
    scikit-learn.org/stable/api/sklearn.pipeline.html
    Mon Apr 21 17:07:38 UTC 2025
      116.3K bytes
      Cache
     
  2. randomized_svd — scikit-learn 1.6.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version randomized_svd # sklearn.utils.extmath. randomized_sv...
    scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html
    Mon Apr 21 17:07:39 UTC 2025
      117.8K bytes
      Cache
     
  3. all_estimators — scikit-learn 1.6.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version all_estimators # sklearn.utils.discovery. all_estimat...
    scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_estimators.html
    Mon Apr 21 17:07:40 UTC 2025
      109.5K bytes
      Cache
     
  4. Generalized Linear Models — scikit-learn 1.6.1 ...

    Examples concerning the sklearn.linear_model module. Comparing Linear Bayesian Regressors Comparing various online solvers Curve Fitting with Bayesian Ridge Regression Decision Boundaries of Multin...
    scikit-learn.org/stable/auto_examples/linear_model/index.html
    Mon Apr 21 17:07:39 UTC 2025
      94.9K bytes
      Cache
     
  5. Gradient Boosting regression — scikit-learn 1.6...

    This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here,...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
    Mon Apr 21 17:07:39 UTC 2025
      109.9K bytes
      Cache
     
  6. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Mon Apr 21 17:07:39 UTC 2025
      77.5K bytes
      Cache
     
  7. SVM Margins Example — scikit-learn 1.6.1 docume...

    The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our model that we do not have that much faith in our data’s distribution, and wi...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
    Mon Apr 21 17:07:38 UTC 2025
      100K bytes
      Cache
     
  8. Recursive feature elimination — scikit-learn 1....

    This example demonstrates how Recursive Feature Elimination ( RFE) can be used to determine the importance of individual pixels for classifying handwritten digits. RFE recursively removes the least...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html
    Mon Apr 21 17:07:38 UTC 2025
      91.4K bytes
      Cache
     
  9. Polynomial and Spline interpolation — scikit-le...

    This example demonstrates how to approximate a function with polynomials up to degree degree by using ridge regression. We show two different ways given n_samples of 1d points x_i: PolynomialFeatur...
    scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
    Mon Apr 21 17:07:39 UTC 2025
      121.4K bytes
      Cache
     
  10. SGD: Penalties — scikit-learn 1.6.1 documentation

    Contours of where the penalty is equal to 1 for the three penalties L1, L2 and elastic-net. All of the above are supported by SGDClassifier and SGDRegressor. Total running time of the script:(0 min...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_penalties.html
    Mon Apr 21 17:07:39 UTC 2025
      92.4K bytes
      Cache
     
Back to top