Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 941 - 950 of 3,496 for document (3.88 seconds)

  1. SVM: Weighted samples — scikit-learn 1.8....

    Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphas...
    scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html
    Mon Jan 19 11:28:23 GMT 2026
      93.4K bytes
      Cache
     
  2. Fitting an Elastic Net with a precomputed Gram ...

    see the documentation for the sample_weight parameter...nbviewer.org. ElasticNet ? Documentation for ElasticNet i Fitted...
    scikit-learn.org/stable/auto_examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_...
    Mon Jan 19 11:28:25 GMT 2026
      120K bytes
      Cache
     
  3. Probability calibration of classifiers — ...

    When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration.html
    Mon Jan 19 11:28:23 GMT 2026
      109.1K bytes
      Cache
     
  4. Version 0.17 — scikit-learn 1.8.0 documen...

    Version 0.17.1: February 18, 2016 Changelog: Bug fixes: Upgrade vendored joblib to version 0.9.4 that fixes an important bug in joblib.Parallel that can silently yield to wrong results when working...
    scikit-learn.org/stable/whats_new/v0.17.html
    Mon Jan 19 11:28:23 GMT 2026
      89.3K bytes
      Cache
     
  5. Species distribution modeling — scikit-le...

    Modeling species’ geographic distributions is an important problem in conservation biology. In this example, we model the geographic distribution of two South American mammals given past observatio...
    scikit-learn.org/stable/auto_examples/applications/plot_species_distribution_modeling.html
    Mon Jan 19 11:28:25 GMT 2026
      122.1K bytes
      Cache
     
  6. 1. Supervised learning — scikit-learn 1.8...

    Linear Models- Ordinary Least Squares, Ridge regression and classification, Lasso, Multi-task Lasso, Elastic-Net, Multi-task Elastic-Net, Least Angle Regression, LARS Lasso, Orthogonal Matching Pur...
    scikit-learn.org/stable/supervised_learning.html
    Mon Jan 19 11:28:23 GMT 2026
      46.6K bytes
      Cache
     
  7. GMM Initialization Methods — scikit-learn...

    Examples of the different methods of initialization in Gaussian Mixture Models See Gaussian mixture models for more information on the estimator. Here we generate some sample data with four easy to...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_init.html
    Mon Jan 19 11:28:24 GMT 2026
      98.7K bytes
      Cache
     
  8. Univariate Feature Selection — scikit-lea...

    This notebook is an example of using univariate feature selection to improve classification accuracy on a noisy dataset. In this example, some noisy (non informative) features are added to the iris...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_feature_selection.html
    Mon Jan 19 11:28:25 GMT 2026
      105.7K bytes
      Cache
     
  9. Missing Value Imputation — scikit-learn 1...

    Examples concerning the sklearn.impute module. Imputing missing values before building an estimator Imputing missing values with variants of IterativeImputer
    scikit-learn.org/stable/auto_examples/impute/index.html
    Mon Jan 19 11:28:24 GMT 2026
      74K bytes
      Cache
     
  10. Kernel Density Estimation — scikit-learn ...

    This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html
    Mon Jan 19 11:28:23 GMT 2026
      93.6K bytes
      Cache
     
Back to Top