Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 871 - 880 of 1,702 for document (0.24 sec)

  1. CompoundKernel — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version CompoundKernel # class sklearn.gaussian_process.kerne...
    scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.CompoundKernel.html
    Thu Jul 03 11:42:06 UTC 2025
      121.1K bytes
      Cache
     
  2. Illustration of prior and posterior Gaussian pr...

    This example illustrates the prior and posterior of a GaussianProcessRegressor with different kernels. Mean, standard deviation, and 5 samples are shown for both prior and posterior distributions. ...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
    Thu Jul 03 11:42:05 UTC 2025
      135.7K bytes
      Cache
     
  3. Target Encoder’s Internal Cross fitting — sciki...

    The TargetEncoder replaces each category of a categorical feature with the shrunk mean of the target variable for that category. This method is useful in cases where there is a strong relationship ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_target_encoder_cross_val.html
    Thu Jul 03 11:42:06 UTC 2025
      112.3K bytes
      Cache
     
  4. Multiclass Receiver Operating Characteristic (R...

    This example describes the use of the Receiver Operating Characteristic (ROC) metric to evaluate the quality of multiclass classifiers. ROC curves typically feature true positive rate (TPR) on the ...
    scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
    Thu Jul 03 11:42:06 UTC 2025
      150.8K bytes
      Cache
     
  5. 1.4. Support Vector Machines — scikit-learn 1.7...

    Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. The advantages of support vector machines are: Effective in high ...
    scikit-learn.org/stable/modules/svm.html
    Thu Jul 03 11:42:06 UTC 2025
      125.4K bytes
      Cache
     
  6. Gradient Boosting Out-of-Bag estimates — scikit...

    Out-of-bag (OOB) estimates can be a useful heuristic to estimate the “optimal” number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be comput...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_oob.html
    Thu Jul 03 11:42:06 UTC 2025
      112K bytes
      Cache
     
  7. Joint feature selection with multi-task Lasso —...

    The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a t...
    scikit-learn.org/stable/auto_examples/linear_model/plot_multi_task_lasso_support.html
    Thu Jul 03 11:42:06 UTC 2025
      99.6K bytes
      Cache
     
  8. mean_absolute_percentage_error — scikit-learn 1...

    Gallery examples: Lagged features for time series forecasting
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html
    Thu Jul 03 11:42:05 UTC 2025
      112.6K bytes
      Cache
     
  9. d2_log_loss_score — scikit-learn 1.7.0 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version d2_log_loss_score # sklearn.metrics. d2_log_loss_scor...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_log_loss_score.html
    Thu Jul 03 11:42:05 UTC 2025
      107.6K bytes
      Cache
     
  10. Neural Networks — scikit-learn 1.7.0 documentation

    Examples concerning the sklearn.neural_network module. Compare Stochastic learning strategies for MLPClassifier Restricted Boltzmann Machine features for digit classification Varying regularization...
    scikit-learn.org/stable/auto_examples/neural_networks/index.html
    Thu Jul 03 11:42:06 UTC 2025
      75.8K bytes
      1 views
      Cache
     
Back to top