Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 861 - 870 of 1,549 for document (0.57 sec)

  1. mean_gamma_deviance — scikit-learn 1.7.1 docume...

    Skip to main content Back to top Ctrl + K GitHub Choose version mean_gamma_deviance # sklearn.metrics. mean_gamma_dev...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_gamma_deviance.html
    Sat Aug 23 16:32:04 UTC 2025
      106.9K bytes
      Cache
     
  2. fetch_california_housing — scikit-learn 1.7.1 d...

    Gallery examples: Comparing Random Forests and Histogram Gradient Boosting models Early stopping in Gradient Boosting Imputing missing values with variants of IterativeImputer Imputing missing valu...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
    Sat Aug 23 16:32:03 UTC 2025
      116.9K bytes
      Cache
     
  3. mean_absolute_error — scikit-learn 1.7.1 docume...

    Gallery examples: Lagged features for time series forecasting Poisson regression and non-normal loss Quantile regression Tweedie regression on insurance claims
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
    Sat Aug 23 16:32:04 UTC 2025
      113.1K bytes
      Cache
     
  4. multilabel_confusion_matrix — scikit-learn 1.7....

    Skip to main content Back to top Ctrl + K GitHub Choose version multilabel_confusion_matrix # sklearn.metrics. multil...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html
    Sat Aug 23 16:32:04 UTC 2025
      113.1K bytes
      Cache
     
  5. mean_squared_error — scikit-learn 1.7.1 documen...

    Gallery examples: Model Complexity Influence Early stopping in Gradient Boosting Prediction Intervals for Gradient Boosting Regression Gradient Boosting regression Ordinary Least Squares and Ridge ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
    Sat Aug 23 16:32:03 UTC 2025
      117K bytes
      Cache
     
  6. sklearn.random_projection — scikit-learn 1.7.1 ...

    Random projection transformers. Random projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional ...
    scikit-learn.org/stable/api/sklearn.random_projection.html
    Sat Aug 23 16:32:04 UTC 2025
      116.4K bytes
      Cache
     
  7. sklearn.kernel_approximation — scikit-learn 1.7...

    Approximate kernel feature maps based on Fourier transforms and count sketches. User guide. See the Kernel Approximation section for further details.
    scikit-learn.org/stable/api/sklearn.kernel_approximation.html
    Sat Aug 23 16:32:04 UTC 2025
      116.1K bytes
      Cache
     
  8. fetch_species_distributions — scikit-learn 1.7....

    Gallery examples: Species distribution modeling Kernel Density Estimate of Species Distributions
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_species_distributions.html
    Sat Aug 23 16:32:03 UTC 2025
      112.7K bytes
      Cache
     
  9. load_sample_image — scikit-learn 1.7.1 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version load_sample_image # sklearn.datasets. load_sample_ima...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_sample_image.html
    Sat Aug 23 16:32:03 UTC 2025
      106.4K bytes
      Cache
     
  10. sklearn.naive_bayes — scikit-learn 1.7.1 docume...

    Naive Bayes algorithms. These are supervised learning methods based on applying Bayes’ theorem with strong (naive) feature independence assumptions. User guide. See the Naive Bayes section for furt...
    scikit-learn.org/stable/api/sklearn.naive_bayes.html
    Sat Aug 23 16:32:04 UTC 2025
      115.8K bytes
      Cache
     
Back to top