Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 811 - 820 of 1,825 for document (0.23 sec)

  1. check_cv — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub check_cv # sklearn.model_selection. check_cv ( cv = 5 , y = None , *...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.check_cv.html
    Fri Nov 22 23:53:26 UTC 2024
      107.6K bytes
      Cache
     
  2. plot_tree — scikit-learn 1.5.2 documentation

    Gallery examples: Plot the decision surface of decision trees trained on the iris dataset Understanding the decision tree structure
    scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html
    Fri Nov 22 23:53:26 UTC 2024
      113.1K bytes
      Cache
     
  3. sklearn.pipeline — scikit-learn 1.5.2 documenta...

    Utilities to build a composite estimator as a chain of transforms and estimators. User guide. See the Pipelines and composite estimators section for further details.
    scikit-learn.org/stable/api/sklearn.pipeline.html
    Fri Nov 22 23:53:26 UTC 2024
      114.8K bytes
      Cache
     
  4. Kibana Dashboard | Elastic

    Try free Dive into the documentation, including a guide for creating...all the way to a granular document‑level inspection. From data...
    www.elastic.co/kibana/kibana-dashboard
    Sat Nov 23 00:15:53 UTC 2024
      421.8K bytes
      Cache
     
  5. 1.4. Support Vector Machines — scikit-learn 1.5...

    Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. The advantages of support vector machines are: Effective in high ...
    scikit-learn.org/stable/modules/svm.html
    Fri Nov 22 23:53:26 UTC 2024
      124.9K bytes
      Cache
     
  6. Joint feature selection with multi-task Lasso —...

    The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a t...
    scikit-learn.org/stable/auto_examples/linear_model/plot_multi_task_lasso_support.html
    Fri Nov 22 23:53:26 UTC 2024
      95.2K bytes
      Cache
     
  7. Gradient Boosting Out-of-Bag estimates — scikit...

    Out-of-bag (OOB) estimates can be a useful heuristic to estimate the “optimal” number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be comput...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_oob.html
    Fri Nov 22 23:53:26 UTC 2024
      107.5K bytes
      Cache
     
  8. Illustration of prior and posterior Gaussian pr...

    This example illustrates the prior and posterior of a GaussianProcessRegressor with different kernels. Mean, standard deviation, and 5 samples are shown for both prior and posterior distributions. ...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
    Fri Nov 22 23:53:26 UTC 2024
      131.2K bytes
      Cache
     
  9. Multiclass Receiver Operating Characteristic (R...

    This example describes the use of the Receiver Operating Characteristic (ROC) metric to evaluate the quality of multiclass classifiers. ROC curves typically feature true positive rate (TPR) on the ...
    scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
    Fri Nov 22 23:53:26 UTC 2024
      143.8K bytes
      Cache
     
  10. Target Encoder’s Internal Cross fitting — sciki...

    The TargetEncoder replaces each category of a categorical feature with the shrunk mean of the target variable for that category. This method is useful in cases where there is a strong relationship ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_target_encoder_cross_val.html
    Fri Nov 22 23:53:27 UTC 2024
      107.6K bytes
      Cache
     
Back to top