Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 801 - 810 of 1,825 for document (0.24 sec)

  1. rand_score — scikit-learn 1.5.2 documentation

    Gallery examples: Adjustment for chance in clustering performance evaluation
    scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html
    Fri Nov 22 23:53:26 UTC 2024
      109.6K bytes
      Cache
     
  2. matthews_corrcoef — scikit-learn 1.5.2 document...

    Skip to main content Back to top Ctrl + K GitHub matthews_corrcoef # sklearn.metrics. matthews_corrcoef ( y_true , y_...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
    Fri Nov 22 23:53:26 UTC 2024
      108.3K bytes
      Cache
     
  3. Importance of Feature Scaling — scikit-learn 1....

    Feature scaling through standardization, also called Z-score normalization, is an important preprocessing step for many machine learning algorithms. It involves rescaling each feature such that it ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Fri Nov 22 23:53:27 UTC 2024
      117.9K bytes
      Cache
     
  4. coverage_error — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub coverage_error # sklearn.metrics. coverage_error ( y_true , y_score ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.coverage_error.html
    Fri Nov 22 23:53:26 UTC 2024
      107.1K bytes
      Cache
     
  5. dcg_score — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub dcg_score # sklearn.metrics. dcg_score ( y_true , y_score , * , k = ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.dcg_score.html
    Fri Nov 22 23:53:27 UTC 2024
      111.5K bytes
      Cache
     
  6. sklearn.inspection — scikit-learn 1.5.2 documen...

    Tools for model inspection. User guide. See the Inspection section for further details. Plotting:
    scikit-learn.org/stable/api/sklearn.inspection.html
    Fri Nov 22 23:53:26 UTC 2024
      114.8K bytes
      Cache
     
  7. make_moons — scikit-learn 1.5.2 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Comparing anomaly detection algori...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
    Fri Nov 22 23:53:26 UTC 2024
      113.3K bytes
      Cache
     
  8. make_circles — scikit-learn 1.5.2 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Kernel PCA Hashing feature transfo...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
    Fri Nov 22 23:53:27 UTC 2024
      115.2K bytes
      Cache
     
  9. set_config — scikit-learn 1.5.2 documentation

    Gallery examples: Release Highlights for scikit-learn 1.4 Release Highlights for scikit-learn 0.23 Displaying Pipelines Introducing the set_output API Metadata Routing Post-tuning the decision thre...
    scikit-learn.org/stable/modules/generated/sklearn.set_config.html
    Fri Nov 22 23:53:26 UTC 2024
      118.9K bytes
      Cache
     
  10. sklearn.manifold — scikit-learn 1.5.2 documenta...

    Data embedding techniques. User guide. See the Manifold learning section for further details.
    scikit-learn.org/stable/api/sklearn.manifold.html
    Fri Nov 22 23:53:27 UTC 2024
      116K bytes
      Cache
     
Back to top