Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 801 - 810 of 1,549 for document (0.35 sec)

  1. Ordinary Least Squares and Ridge Regression — s...

    Ordinary Least Squares: We illustrate how to use the ordinary least squares (OLS) model, LinearRegression, on a single feature of the diabetes dataset. We train on a subset of the data, evaluate on...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ols_ridge.html
    Sat Aug 23 16:32:04 UTC 2025
      106.7K bytes
      Cache
     
  2. Curve Fitting with Bayesian Ridge Regression — ...

    Computes a Bayesian Ridge Regression of Sinusoids. See Bayesian Ridge Regression for more information on the regressor. In general, when fitting a curve with a polynomial by Bayesian ridge regressi...
    scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html
    Sat Aug 23 16:32:04 UTC 2025
      98.1K bytes
      Cache
     
  3. zero_one_loss — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version zero_one_loss # sklearn.metrics. zero_one_loss ( y_tr...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.zero_one_loss.html
    Sat Aug 23 16:32:03 UTC 2025
      110.3K bytes
      Cache
     
  4. mean_poisson_deviance — scikit-learn 1.7.1 docu...

    Gallery examples: Poisson regression and non-normal loss
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_poisson_deviance.html
    Sat Aug 23 16:32:04 UTC 2025
      108.1K bytes
      Cache
     
  5. Ridge coefficients as a function of the L2 Regu...

    A model that overfits learns the training data too well, capturing both the underlying patterns and the noise in the data. However, when applied to unseen data, the learned associations may not hol...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html
    Sat Aug 23 16:32:03 UTC 2025
      103.3K bytes
      Cache
     
  6. Kernel Density Estimate of Species Distribution...

    This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric – i.e. distances over point...
    scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html
    Sat Aug 23 16:32:04 UTC 2025
      105.1K bytes
      Cache
     
  7. cohen_kappa_score — scikit-learn 1.7.1 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version cohen_kappa_score # sklearn.metrics. cohen_kappa_scor...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
    Sat Aug 23 16:32:03 UTC 2025
      111K bytes
      Cache
     
  8. 8. Dataset loading utilities — scikit-learn 1.7...

    The sklearn.datasets package embeds some small toy datasets and provides helpers to fetch larger datasets commonly used by the machine learning community to benchmark algorithms on data that comes ...
    scikit-learn.org/stable/datasets.html
    Sat Aug 23 16:32:03 UTC 2025
      38.5K bytes
      Cache
     
  9. Categorical Feature Support in Gradient Boostin...

    In this example, we will compare the training times and prediction performances of HistGradientBoostingRegressor with different encoding strategies for categorical features. In particular, we will ...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_categorical.html
    Sat Aug 23 16:32:04 UTC 2025
      125.4K bytes
      Cache
     
  10. balanced_accuracy_score — scikit-learn 1.7.1 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version balanced_accuracy_score # sklearn.metrics. balanced_a...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
    Sat Aug 23 16:32:04 UTC 2025
      110.7K bytes
      Cache
     
Back to top