Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 791 - 800 of 1,825 for document (0.23 sec)

  1. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Fri Nov 22 23:53:26 UTC 2024
      79.6K bytes
      Cache
     
  2. SGD: Penalties — scikit-learn 1.5.2 documentation

    Contours of where the penalty is equal to 1 for the three penalties L1, L2 and elastic-net. All of the above are supported by SGDClassifier and SGDRegressor. Total running time of the script:(0 min...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_penalties.html
    Fri Nov 22 23:53:27 UTC 2024
      87.9K bytes
      Cache
     
  3. classification_report — scikit-learn 1.5.2 docu...

    Gallery examples: Recognizing hand-written digits Faces recognition example using eigenfaces and SVMs Pipeline ANOVA SVM Custom refit strategy of a grid search with cross-validation Restricted Bolt...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
    Fri Nov 22 23:53:26 UTC 2024
      119.8K bytes
      Cache
     
  4. r2_score — scikit-learn 1.5.2 documentation

    Gallery examples: L1-based models for Sparse Signals Linear Regression Example Non-negative least squares Failure of Machine Learning to infer causal effects Effect of transforming the targets in r...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
    Fri Nov 22 23:53:26 UTC 2024
      120.4K bytes
      Cache
     
  5. log_loss — scikit-learn 1.5.2 documentation

    Gallery examples: Probability Calibration curves Probability Calibration for 3-class classification Gradient Boosting Out-of-Bag estimates Gradient Boosting regularization Probabilistic predictions...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
    Fri Nov 22 23:53:26 UTC 2024
      114.1K bytes
      Cache
     
  6. roc_curve — scikit-learn 1.5.2 documentation

    Gallery examples: Species distribution modeling Visualizations with Display Objects Detection error tradeoff (DET) curve Multiclass Receiver Operating Characteristic (ROC)
    scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
    Fri Nov 22 23:53:26 UTC 2024
      115.9K bytes
      Cache
     
  7. det_curve — scikit-learn 1.5.2 documentation

    Gallery examples: Detection error tradeoff (DET) curve
    scikit-learn.org/stable/modules/generated/sklearn.metrics.det_curve.html
    Fri Nov 22 23:53:26 UTC 2024
      110.8K bytes
      Cache
     
  8. sklearn.covariance — scikit-learn 1.5.2 documen...

    Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. C...
    scikit-learn.org/stable/api/sklearn.covariance.html
    Fri Nov 22 23:53:27 UTC 2024
      118.5K bytes
      Cache
     
  9. sklearn.multioutput — scikit-learn 1.5.2 docume...

    Multioutput regression and classification. The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their constructor. The meta-estimator extends ...
    scikit-learn.org/stable/api/sklearn.multioutput.html
    Fri Nov 22 23:53:27 UTC 2024
      115.1K bytes
      Cache
     
  10. sklearn.ensemble — scikit-learn 1.5.2 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Fri Nov 22 23:53:27 UTC 2024
      120K bytes
      Cache
     
Back to top