Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 781 - 790 of 1,549 for document (3.23 sec)

  1. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Sat Aug 23 16:32:03 UTC 2025
      77.2K bytes
      Cache
     
  2. Importance of Feature Scaling — scikit-learn 1....

    Feature scaling through standardization, also called Z-score normalization, is an important preprocessing step for many machine learning algorithms. It involves rescaling each feature such that it ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Sat Aug 23 16:32:03 UTC 2025
      122.5K bytes
      Cache
     
  3. SVM Margins Example — scikit-learn 1.7.1 docume...

    The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our model that we do not have that much faith in our data’s distribution, and wi...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
    Sat Aug 23 16:32:04 UTC 2025
      99.9K bytes
      Cache
     
  4. Nearest Centroid Classification — scikit-learn ...

    Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.,., Total running time of the script:(0 minutes 0.154 seconds) Launch binder Launch JupyterLite ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html
    Sat Aug 23 16:32:03 UTC 2025
      90.7K bytes
      Cache
     
  5. make_moons — scikit-learn 1.7.1 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Comparing anomaly detection algori...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
    Sat Aug 23 16:32:03 UTC 2025
      114.3K bytes
      Cache
     
  6. make_circles — scikit-learn 1.7.1 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Kernel PCA Hashing feature transfo...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
    Sat Aug 23 16:32:03 UTC 2025
      116.2K bytes
      Cache
     
  7. rand_score — scikit-learn 1.7.1 documentation

    Gallery examples: Adjustment for chance in clustering performance evaluation
    scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html
    Sat Aug 23 16:32:04 UTC 2025
      110.6K bytes
      Cache
     
  8. Generalized Linear Models — scikit-learn 1.7.1 ...

    Examples concerning the sklearn.linear_model module. Comparing Linear Bayesian Regressors Curve Fitting with Bayesian Ridge Regression Decision Boundaries of Multinomial and One-vs-Rest Logistic Re...
    scikit-learn.org/stable/auto_examples/linear_model/index.html
    Sat Aug 23 16:32:03 UTC 2025
      93.7K bytes
      Cache
     
  9. dcg_score — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version dcg_score # sklearn.metrics. dcg_score ( y_true , y_s...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.dcg_score.html
    Sat Aug 23 16:32:03 UTC 2025
      112.5K bytes
      Cache
     
  10. show_versions — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version show_versions # sklearn. show_versions ( ) [source] #...
    scikit-learn.org/stable/modules/generated/sklearn.show_versions.html
    Sat Aug 23 16:32:04 UTC 2025
      104.3K bytes
      Cache
     
Back to top