- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 761 - 770 of 1,682 for document (1.3 sec)
-
FastICA — scikit-learn 1.6.1 documentation
Gallery examples: Blind source separation using FastICA Faces dataset decompositions FastICA on 2D point cloudsscikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html -
ConstantKernel — scikit-learn 1.6.1 documentation
Gallery examples: Illustration of prior and posterior Gaussian process for different kernels Iso-probability lines for Gaussian Processes classification (GPC)scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.ConstantKernel.html -
SelectFromModel — scikit-learn 1.6.1 documentation
scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html -
RandomForestRegressor — scikit-learn 1.6.1 docu...
Gallery examples: Release Highlights for scikit-learn 1.4 Release Highlights for scikit-learn 0.24 Combine predictors using stacking Comparing Random Forests and Histogram Gradient Boosting models ...scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html -
DummyRegressor — scikit-learn 1.6.1 documentation
scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html -
Dataset examples — scikit-learn 1.6.1 documenta...
scikit-learn.org/stable/auto_examples/datasets/index.html -
Confusion matrix — scikit-learn 1.6.1 documenta...
Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is e...scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html -
Ensemble methods — scikit-learn 1.6.1 documenta...
Examples concerning the sklearn.ensemble module. Categorical Feature Support in Gradient Boosting Combine predictors using stacking Comparing Random Forests and Histogram Gradient Boosting models C...scikit-learn.org/stable/auto_examples/ensemble/index.html -
Feature Selection — scikit-learn 1.6.1 document...
Examples concerning the sklearn.feature_selection module. Comparison of F-test and mutual information Model-based and sequential feature selection Pipeline ANOVA SVM Recursive feature elimination R...scikit-learn.org/stable/auto_examples/feature_selection/index.html -
Decision Trees — scikit-learn 1.6.1 documentation
Examples concerning the sklearn.tree module. Decision Tree Regression Plot the decision surface of decision trees trained on the iris dataset Post pruning decision trees with cost complexity prunin...scikit-learn.org/stable/auto_examples/tree/index.html