Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 731 - 740 of 1,701 for document (0.42 sec)

  1. Gradient Boosting regression — scikit-learn 1.7...

    This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here,...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
    Thu Jul 03 11:42:06 UTC 2025
      110K bytes
      Cache
     
  2. Nearest Centroid Classification — scikit-learn ...

    Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.,., Total running time of the script:(0 minutes 0.152 seconds) Launch binder Launch JupyterLite ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html
    Thu Jul 03 11:42:05 UTC 2025
      90.7K bytes
      Cache
     
  3. Polynomial and Spline interpolation — scikit-le...

    This example demonstrates how to approximate a function with polynomials up to degree degree by using ridge regression. We show two different ways given n_samples of 1d points x_i: PolynomialFeatur...
    scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
    Thu Jul 03 11:42:05 UTC 2025
      121.3K bytes
      Cache
     
  4. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Thu Jul 03 11:42:05 UTC 2025
      77.2K bytes
      Cache
     
  5. r2_score — scikit-learn 1.7.0 documentation

    Gallery examples: Effect of transforming the targets in regression model Failure of Machine Learning to infer causal effects L1-based models for Sparse Signals Non-negative least squares Ordinary L...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
    Thu Jul 03 11:42:06 UTC 2025
      121.5K bytes
      Cache
     
  6. rand_score — scikit-learn 1.7.0 documentation

    Gallery examples: Adjustment for chance in clustering performance evaluation
    scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html
    Thu Jul 03 11:42:06 UTC 2025
      110.6K bytes
      Cache
     
  7. classification_report — scikit-learn 1.7.0 docu...

    Gallery examples: Faces recognition example using eigenfaces and SVMs Recognizing hand-written digits Column Transformer with Heterogeneous Data Sources Pipeline ANOVA SVM Custom refit strategy of ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
    Thu Jul 03 11:42:05 UTC 2025
      120.8K bytes
      Cache
     
  8. dcg_score — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version dcg_score # sklearn.metrics. dcg_score ( y_true , y_s...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.dcg_score.html
    Thu Jul 03 11:42:05 UTC 2025
      112.5K bytes
      Cache
     
  9. make_circles — scikit-learn 1.7.0 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Kernel PCA Hashing feature transfo...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
    Thu Jul 03 11:42:06 UTC 2025
      116.2K bytes
      Cache
     
  10. make_moons — scikit-learn 1.7.0 documentation

    Gallery examples: Classifier comparison Comparing different clustering algorithms on toy datasets Comparing different hierarchical linkage methods on toy datasets Comparing anomaly detection algori...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
    Thu Jul 03 11:42:05 UTC 2025
      114.3K bytes
      Cache
     
Back to top