Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 721 - 730 of 1,701 for document (0.23 sec)

  1. sklearn.multioutput — scikit-learn 1.7.0 docume...

    Multioutput regression and classification. The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their constructor. The meta-estimator extends ...
    scikit-learn.org/stable/api/sklearn.multioutput.html
    Thu Jul 03 11:42:06 UTC 2025
      116.1K bytes
      Cache
     
  2. sklearn.pipeline — scikit-learn 1.7.0 documenta...

    Utilities to build a composite estimator as a chain of transforms and estimators. User guide. See the Pipelines and composite estimators section for further details.
    scikit-learn.org/stable/api/sklearn.pipeline.html
    Thu Jul 03 11:42:05 UTC 2025
      115.8K bytes
      Cache
     
  3. mean_shift — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version mean_shift # sklearn.cluster. mean_shift ( X , * , ba...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.mean_shift.html
    Thu Jul 03 11:42:05 UTC 2025
      111.8K bytes
      Cache
     
  4. check_cv — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version check_cv # sklearn.model_selection. check_cv ( cv = 5...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.check_cv.html
    Thu Jul 03 11:42:05 UTC 2025
      108.6K bytes
      Cache
     
  5. Generalized Linear Models — scikit-learn 1.7.0 ...

    Examples concerning the sklearn.linear_model module. Comparing Linear Bayesian Regressors Curve Fitting with Bayesian Ridge Regression Decision Boundaries of Multinomial and One-vs-Rest Logistic Re...
    scikit-learn.org/stable/auto_examples/linear_model/index.html
    Thu Jul 03 11:42:05 UTC 2025
      93.7K bytes
      Cache
     
  6. Importance of Feature Scaling — scikit-learn 1....

    Feature scaling through standardization, also called Z-score normalization, is an important preprocessing step for many machine learning algorithms. It involves rescaling each feature such that it ...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Thu Jul 03 11:42:06 UTC 2025
      122.5K bytes
      Cache
     
  7. Recursive feature elimination — scikit-learn 1....

    This example demonstrates how Recursive Feature Elimination ( RFE) can be used to determine the importance of individual pixels for classifying handwritten digits. RFE recursively removes the least...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html
    Thu Jul 03 11:42:05 UTC 2025
      91.4K bytes
      Cache
     
  8. SGD: Penalties — scikit-learn 1.7.0 documentation

    Contours of where the penalty is equal to 1 for the three penalties L1, L2 and elastic-net. All of the above are supported by SGDClassifier and SGDRegressor. Total running time of the script:(0 min...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_penalties.html
    Thu Jul 03 11:42:05 UTC 2025
      92.3K bytes
      Cache
     
  9. SVM Margins Example — scikit-learn 1.7.0 docume...

    The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our model that we do not have that much faith in our data’s distribution, and wi...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
    Thu Jul 03 11:42:05 UTC 2025
      99.9K bytes
      Cache
     
  10. sklearn.ensemble — scikit-learn 1.7.0 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Thu Jul 03 11:42:05 UTC 2025
      120.9K bytes
      Cache
     
Back to top