Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 641 - 650 of 1,745 for document (1.65 sec)

  1. Precision tuning (beta) | App Search documentat...

    (beta) IMPORTANT : This documentation is no longer updated. Refer...version policy and the latest documentation . Precision tuning (beta)...
    www.elastic.co/guide/en/app-search/current/precision-tuning.html
    Tue Jul 29 14:26:41 UTC 2025
      48.9K bytes
      Cache
     
  2. as_float_array — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version as_float_array # sklearn.utils. as_float_array ( X , ...
    scikit-learn.org/stable/modules/generated/sklearn.utils.as_float_array.html
    Thu Oct 09 16:57:45 UTC 2025
      108.9K bytes
      Cache
     
  3. Plot Hierarchical Clustering Dendrogram — sciki...

    This example plots the corresponding dendrogram of a hierarchical clustering using AgglomerativeClustering and the dendrogram method available in scipy. Total running time of the script:(0 minutes ...
    scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html
    Fri Oct 10 15:14:33 UTC 2025
      89.5K bytes
      Cache
     
  4. Spectral clustering for image segmentation — sc...

    In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the Spectral clustering approach solves the problem know as...
    scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html
    Fri Oct 10 15:14:36 UTC 2025
      100.4K bytes
      Cache
     
  5. Comparing Linear Bayesian Regressors — scikit-l...

    This example compares two different bayesian regressors: a Automatic Relevance Determination - ARD, a Bayesian Ridge Regression. In the first part, we use an Ordinary Least Squares(OLS) model as a ...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ard.html
    Fri Oct 10 15:14:35 UTC 2025
      120.3K bytes
      Cache
     
  6. FastICA on 2D point clouds — scikit-learn 1.7.2...

    This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. Independent component analysis (ICA) vs Principal component analysi...
    scikit-learn.org/stable/auto_examples/decomposition/plot_ica_vs_pca.html
    Fri Oct 10 15:14:33 UTC 2025
      103.2K bytes
      Cache
     
  7. OOB Errors for Random Forests — scikit-learn 1....

    The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit from a bootstrap sample of the training observations z_i = (x_i, y_i). The out-of-bag(OOB) error is the...
    scikit-learn.org/stable/auto_examples/ensemble/plot_ensemble_oob.html
    Fri Oct 10 15:14:36 UTC 2025
      93.9K bytes
      Cache
     
  8. Demo of DBSCAN clustering algorithm — scikit-le...

    DBSCAN (Density-Based Spatial Clustering of Applications with Noise) finds core samples in regions of high density and expands clusters from them. This algorithm is good for data which contains clu...
    scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
    Fri Oct 10 15:14:35 UTC 2025
      103K bytes
      Cache
     
  9. Comparison of Manifold Learning methods — sciki...

    An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the manifold module page For a si...
    scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html
    Fri Oct 10 15:14:35 UTC 2025
      113.1K bytes
      Cache
     
  10. SVM: Weighted samples — scikit-learn 1.7.2 docu...

    Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphas...
    scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html
    Fri Oct 10 15:14:35 UTC 2025
      93.7K bytes
      Cache
     
Back to top