Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 621 - 630 of 1,825 for document (0.25 sec)

  1. Segmenting the picture of greek coins in region...

    This example uses Spectral clustering on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering...
    scikit-learn.org/stable/auto_examples/cluster/plot_coin_segmentation.html
    Fri Nov 22 23:53:27 UTC 2024
      91.3K bytes
      Cache
     
  2. Online learning of a dictionary of parts of fac...

    This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online ...
    scikit-learn.org/stable/auto_examples/cluster/plot_dict_face_patches.html
    Fri Nov 22 23:53:26 UTC 2024
      94.4K bytes
      Cache
     
  3. Simple 1D Kernel Density Estimation — scikit-le...

    This example uses the KernelDensity class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize th...
    scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html
    Fri Nov 22 23:53:26 UTC 2024
      112K bytes
      Cache
     
  4. Using KBinsDiscretizer to discretize continuous...

    The example compares prediction result of linear regression (linear model) and decision tree (tree based model) with and without discretization of real-valued features. As is shown in the result be...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization.html
    Fri Nov 22 23:53:26 UTC 2024
      93.5K bytes
      Cache
     
  5. class_likelihood_ratios — scikit-learn 1.5.2 do...

    Gallery examples: Class Likelihood Ratios to measure classification performance
    scikit-learn.org/stable/modules/generated/sklearn.metrics.class_likelihood_ratios.html
    Fri Nov 22 23:53:27 UTC 2024
      118K bytes
      Cache
     
  6. get_scorer_names — scikit-learn 1.5.2 documenta...

    Skip to main content Back to top Ctrl + K GitHub get_scorer_names # sklearn.metrics. get_scorer_names ( ) [source] # ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer_names.html
    Fri Nov 22 23:53:27 UTC 2024
      104.6K bytes
      Cache
     
  7. lars_path_gram — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub lars_path_gram # sklearn.linear_model. lars_path_gram ( Xy , Gram , ...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path_gram.html
    Fri Nov 22 23:53:26 UTC 2024
      117.4K bytes
      Cache
     
  8. L1 Penalty and Sparsity in Logistic Regression ...

    Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elastic-Net penalty are used for different values of C. We can see that large values of C give more freedom...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html
    Fri Nov 22 23:53:26 UTC 2024
      95K bytes
      Cache
     
  9. Non-negative least squares — scikit-learn 1.5.2...

    In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. Generate some random data Spli...
    scikit-learn.org/stable/auto_examples/linear_model/plot_nnls.html
    Fri Nov 22 23:53:27 UTC 2024
      88.9K bytes
      Cache
     
  10. Scalable learning with polynomial kernel approx...

    This example illustrates the use of PolynomialCountSketch to efficiently generate polynomial kernel feature-space approximations. This is used to train linear classifiers that approximate the accur...
    scikit-learn.org/stable/auto_examples/kernel_approximation/plot_scalable_poly_kernels.html
    Fri Nov 22 23:53:26 UTC 2024
      110.7K bytes
      Cache
     
Back to top