Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 511 - 520 of 1,555 for document (0.31 sec)

  1. Early stopping in Gradient Boosting — scikit-le...

    Gradient Boosting is an ensemble technique that combines multiple weak learners, typically decision trees, to create a robust and powerful predictive model. It does so in an iterative fashion, wher...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_early_stopping.html
    Fri Aug 22 18:00:34 UTC 2025
      108.1K bytes
      Cache
     
  2. Gaussian Process for Machine Learning — scikit-...

    Examples concerning the sklearn.gaussian_process module. Ability of Gaussian process regression (GPR) to estimate data noise-level Comparison of kernel ridge and Gaussian process regression Forecas...
    scikit-learn.org/stable/auto_examples/gaussian_process/index.html
    Fri Aug 22 18:00:32 UTC 2025
      80.1K bytes
      Cache
     
  3. Agglomerative clustering with different metrics...

    Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can b...
    scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering_metrics.html
    Fri Aug 22 18:00:34 UTC 2025
      111.2K bytes
      Cache
     
  4. Two-class AdaBoost — scikit-learn 1.7.1 documen...

    This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two “Gaussian quantiles” clusters (see sklearn.datasets.make_gaussian_quantiles) and pl...
    scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html
    Fri Aug 22 18:00:29 UTC 2025
      102K bytes
      Cache
     
  5. SGD: Weighted samples — scikit-learn 1.7.1 docu...

    Plot decision function of a weighted dataset, where the size of points is proportional to its weight. Total running time of the script:(0 minutes 0.072 seconds) Launch binder Launch JupyterLite Dow...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html
    Fri Aug 22 18:00:34 UTC 2025
      93.4K bytes
      Cache
     
  6. SVM Tie Breaking Example — scikit-learn 1.7.1 d...

    Tie breaking is costly if decision_function_shape='ovr', and therefore it is not enabled by default. This example illustrates the effect of the break_ties parameter for a multiclass classification ...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_tie_breaking.html
    Fri Aug 22 18:00:34 UTC 2025
      95K bytes
      Cache
     
  7. 9.3. Parallelism, resource management, and conf...

    n_jobs is currently poorly documented. Please help us by improving...explained by this piece of documentation . 9.3.1.3. Parallel NumPy...
    scikit-learn.org/stable/computing/parallelism.html
    Fri Aug 22 18:00:34 UTC 2025
      61K bytes
      Cache
     
  8. Fitting an Elastic Net with a precomputed Gram ...

    see the documentation for the sample_weight parameter...nbviewer.org. ElasticNet ? Documentation for ElasticNet i Fitted...
    scikit-learn.org/stable/auto_examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_...
    Fri Aug 22 18:00:34 UTC 2025
      110.7K bytes
      Cache
     
  9. 8.4. Loading other datasets — scikit-learn 1.7....

    see the OpenML documentation The data_id of the mice...
    scikit-learn.org/stable/datasets/loading_other_datasets.html
    Fri Aug 22 18:00:33 UTC 2025
      60.8K bytes
      Cache
     
  10. Release Highlights for scikit-learn 1.2 — sciki...

    Documentation for HistGradientBoosting...
    scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_2_0.html
    Fri Aug 22 18:00:29 UTC 2025
      141.1K bytes
      Cache
     
Back to top