Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 371 - 380 of 1,745 for document (1.26 sec)

  1. calinski_harabasz_score — scikit-learn 1.7.2 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version calinski_harabasz_score # sklearn.metrics. calinski_h...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
    Thu Oct 09 16:57:45 UTC 2025
      107.6K bytes
      Cache
     
  2. L1 Penalty and Sparsity in Logistic Regression ...

    Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elastic-Net penalty are used for different values of C. We can see that large values of C give more freedom...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html
    Thu Oct 09 16:57:48 UTC 2025
      99.5K bytes
      Cache
     
  3. Non-negative least squares — scikit-learn 1.7.2...

    In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. Generate some random data Spli...
    scikit-learn.org/stable/auto_examples/linear_model/plot_nnls.html
    Thu Oct 09 16:57:48 UTC 2025
      93.4K bytes
      Cache
     
  4. Simple 1D Kernel Density Estimation — scikit-le...

    This example uses the KernelDensity class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize th...
    scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html
    Thu Oct 09 16:57:45 UTC 2025
      116.1K bytes
      Cache
     
  5. Using KBinsDiscretizer to discretize continuous...

    The example compares prediction result of linear regression (linear model) and decision tree (tree based model) with and without discretization of real-valued features. As is shown in the result be...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization.html
    Thu Oct 09 16:57:45 UTC 2025
      98.1K bytes
      Cache
     
  6. Scalable learning with polynomial kernel approx...

    This example illustrates the use of PolynomialCountSketch to efficiently generate polynomial kernel feature-space approximations. This is used to train linear classifiers that approximate the accur...
    scikit-learn.org/stable/auto_examples/kernel_approximation/plot_scalable_poly_kernels.html
    Thu Oct 09 16:57:48 UTC 2025
      115.5K bytes
      Cache
     
  7. Facets Guide | App Search documentation [8.19] ...

    Guide IMPORTANT : This documentation is no longer updated. Refer...version policy and the latest documentation . Facets Guide Facets are...
    www.elastic.co/guide/en/app-search/current/facets-guide.html
    Tue Jul 29 14:26:41 UTC 2025
      23K bytes
      Cache
     
  8. DBSCAN — scikit-learn 1.7.2 documentation

    NearestNeighbors module documentation for details. leaf_size int,...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
    Thu Oct 09 16:57:45 UTC 2025
      135.7K bytes
      Cache
     
  9. Prediction Latency — scikit-learn 1.7.2 documen...

    text documents Out-of-core classification of text documents Normal,...
    scikit-learn.org/stable/auto_examples/applications/plot_prediction_latency.html
    Thu Oct 09 16:57:45 UTC 2025
      142.9K bytes
      Cache
     
  10. KernelRidge — scikit-learn 1.7.2 documentation

    to the kernel; see the documentation for sklearn.metrics.pairwise....
    scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
    Thu Oct 09 16:57:45 UTC 2025
      142.3K bytes
      Cache
     
Back to top