Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1171 - 1180 of 1,699 for document (0.22 sec)

  1. Blind source separation using FastICA — scikit-...

    An example of estimating sources from noisy data. Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 micro...
    scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.html
    Mon Jul 07 14:36:35 UTC 2025
      97K bytes
      Cache
     
  2. mutual_info_score — scikit-learn 1.7.0 document...

    Gallery examples: Adjustment for chance in clustering performance evaluation
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
    Mon Jul 07 14:36:34 UTC 2025
      111.7K bytes
      Cache
     
  3. Early stopping of Stochastic Gradient Descent —...

    Stochastic Gradient Descent is an optimization technique which minimizes a loss function in a stochastic fashion, performing a gradient descent step sample by sample. In particular, it is a very ef...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_early_stopping.html
    Mon Jul 07 14:36:35 UTC 2025
      107.6K bytes
      Cache
     
  4. Plot Ridge coefficients as a function of the re...

    Shows the effect of collinearity in the coefficients of an estimator. Ridge Regression is the estimator used in this example. Each color represents a different feature of the coefficient vector, an...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_path.html
    Mon Jul 07 14:36:35 UTC 2025
      90.5K bytes
      Cache
     
  5. Concatenating multiple feature extraction metho...

    In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use Feat...
    scikit-learn.org/stable/auto_examples/compose/plot_feature_union.html
    Mon Jul 07 14:36:35 UTC 2025
      109.8K bytes
      Cache
     
  6. Effect of transforming the targets in regressio...

    In this example, we give an overview of TransformedTargetRegressor. We use two examples to illustrate the benefit of transforming the targets before learning a linear regression model. The first ex...
    scikit-learn.org/stable/auto_examples/compose/plot_transformed_target.html
    Mon Jul 07 14:36:35 UTC 2025
      125.3K bytes
      Cache
     
  7. sklearn.feature_selection — scikit-learn 1.7.0 ...

    Feature selection algorithms. These include univariate filter selection methods and the recursive feature elimination algorithm. User guide. See the Feature selection section for further details.
    scikit-learn.org/stable/api/sklearn.feature_selection.html
    Mon Jul 07 14:36:32 UTC 2025
      121.4K bytes
      Cache
     
  8. precision_recall_curve — scikit-learn 1.7.0 doc...

    Gallery examples: Visualizations with Display Objects Precision-Recall
    scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
    Mon Jul 07 14:36:35 UTC 2025
      115.3K bytes
      Cache
     
  9. mutual_info_classif — scikit-learn 1.7.0 docume...

    Gallery examples: Selecting dimensionality reduction with Pipeline and GridSearchCV
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
    Mon Jul 07 14:36:35 UTC 2025
      114.9K bytes
      Cache
     
  10. mutual_info_regression — scikit-learn 1.7.0 doc...

    Gallery examples: Comparison of F-test and mutual information
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html
    Mon Jul 07 14:36:32 UTC 2025
      114.4K bytes
      Cache
     
Back to top