Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1161 - 1170 of 1,555 for document (0.65 sec)

  1. Normal, Ledoit-Wolf and OAS Linear Discriminant...

    This example illustrates how the Ledoit-Wolf and Oracle Approximating Shrinkage (OAS) estimators of covariance can improve classification. Total running time of the script:(0 minutes 8.304 seconds)...
    scikit-learn.org/stable/auto_examples/classification/plot_lda.html
    Fri Aug 22 18:00:32 UTC 2025
      99.4K bytes
      Cache
     
  2. __sklearn_is_fitted__ as Developer API — scikit...

    The__sklearn_is_fitted__ method is a convention used in scikit-learn for checking whether an estimator object has been fitted or not. This method is typically implemented in custom estimator classe...
    scikit-learn.org/stable/auto_examples/developing_estimators/sklearn_is_fitted.html
    Fri Aug 22 18:00:34 UTC 2025
      90.3K bytes
      Cache
     
  3. Bisecting K-Means and Regular K-Means Performan...

    This example shows differences between Regular K-Means algorithm and Bisecting K-Means. While K-Means clusterings are different when increasing n_clusters, Bisecting K-Means clustering builds on to...
    scikit-learn.org/stable/auto_examples/cluster/plot_bisect_kmeans.html
    Fri Aug 22 18:00:29 UTC 2025
      90.2K bytes
      Cache
     
  4. Iso-probability lines for Gaussian Processes cl...

    A two-dimensional classification example showing iso-probability lines for the predicted probabilities., Total running time of the script:(0 minutes 0.136 seconds) Launch binder Launch JupyterLite ...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_isoprobability.html
    Fri Aug 22 18:00:29 UTC 2025
      105.9K bytes
      Cache
     
  5. Kibana Dashboard | Elastic

    Try free Dive into the documentation, including a guide for creating...all the way to a granular document‑level inspection. From data...
    www.elastic.co/kibana/kibana-dashboard
    Sat Aug 23 06:27:23 UTC 2025
      511.9K bytes
      Cache
     
  6. Manifold learning on handwritten digits: Locall...

    We illustrate various embedding techniques on the digits dataset. Load digits dataset: We will load the digits dataset and only use six first of the ten available classes. We can plot the first hun...
    scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
    Fri Aug 22 18:00:34 UTC 2025
      119.3K bytes
      Cache
     
  7. Demonstration of multi-metric evaluation on cro...

    Multiple metric parameter search can be done by setting the scoring parameter to a list of metric scorer names or a dict mapping the scorer names to the scorer callables. The scores of all the scor...
    scikit-learn.org/stable/auto_examples/model_selection/plot_multi_metric_evaluation.html
    Fri Aug 22 18:00:34 UTC 2025
      101.5K bytes
      Cache
     
  8. One-class SVM with non-linear kernel (RBF) — sc...

    An example using a one-class SVM for novelty detection. One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or differen...
    scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
    Fri Aug 22 18:00:29 UTC 2025
      100.8K bytes
      Cache
     
  9. Elasticsearch retrievers architecture and use-c...

    which just bring backs all documents: Pretty straightforward, right?...types: knn - return the top documents from a kNN (k Nearest Neighbor)...
    www.elastic.co/search-labs/blog/elasticsearch-retrievers-ga-8.16.0
    Sat Aug 23 06:34:55 UTC 2025
      166.2K bytes
      Cache
     
  10. incr_mean_variance_axis — scikit-learn 1.7.1 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version incr_mean_variance_axis # sklearn.utils.sparsefuncs. ...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.incr_mean_variance_axis.html
    Wed Aug 20 16:02:09 UTC 2025
      111.7K bytes
      Cache
     
Back to top