Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1091 - 1100 of 1,686 for document (0.44 sec)

  1. 4. Inspection — scikit-learn 1.6.1 documentation

    Predictive performance is often the main goal of developing machine learning models. Yet summarizing performance with an evaluation metric is often insufficient: it assumes that the evaluation metr...
    scikit-learn.org/stable/inspection.html
    Mon Apr 21 17:07:39 UTC 2025
      32.8K bytes
      Cache
     
  2. 11. Dispatching — scikit-learn 1.6.1 documentation

    Array API support (experimental)- Example usage, Support for Array API-compatible inputs, Common estimator checks..
    scikit-learn.org/stable/dispatching.html
    Mon Apr 21 17:07:39 UTC 2025
      30.2K bytes
      Cache
     
  3. SVM with custom kernel — scikit-learn 1.6.1 doc...

    Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. Total running time of the script:(0 minutes 0.103 seconds) Launch binder Lau...
    scikit-learn.org/stable/auto_examples/svm/plot_custom_kernel.html
    Mon Apr 21 17:07:39 UTC 2025
      89K bytes
      Cache
     
  4. GMM Initialization Methods — scikit-learn 1.6.1...

    Examples of the different methods of initialization in Gaussian Mixture Models See Gaussian mixture models for more information on the estimator. Here we generate some sample data with four easy to...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm_init.html
    Mon Apr 21 17:07:39 UTC 2025
      99K bytes
      Cache
     
  5. Species distribution modeling — scikit-learn 1....

    Modeling species’ geographic distributions is an important problem in conservation biology. In this example, we model the geographic distribution of two South American mammals given past observatio...
    scikit-learn.org/stable/auto_examples/applications/plot_species_distribution_modeling.html
    Mon Apr 21 17:07:39 UTC 2025
      122.2K bytes
      Cache
     
  6. Probability calibration of classifiers — scikit...

    When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration.html
    Mon Apr 21 17:07:38 UTC 2025
      109.3K bytes
      Cache
     
  7. Kernel Density Estimation — scikit-learn 1.6.1 ...

    This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in ...
    scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html
    Mon Apr 21 17:07:39 UTC 2025
      93.8K bytes
      Cache
     
  8. Missing Value Imputation — scikit-learn 1.6.1 d...

    Examples concerning the sklearn.impute module. Imputing missing values before building an estimator Imputing missing values with variants of IterativeImputer
    scikit-learn.org/stable/auto_examples/impute/index.html
    Mon Apr 21 17:07:39 UTC 2025
      74.4K bytes
      Cache
     
  9. permutation_importance — scikit-learn 1.6.1 doc...

    Gallery examples: Release Highlights for scikit-learn 0.22 Feature importances with a forest of trees Gradient Boosting regression Permutation Importance vs Random Forest Feature Importance (MDI) P...
    scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html
    Mon Apr 21 17:07:40 UTC 2025
      122.4K bytes
      Cache
     
  10. sklearn.preprocessing — scikit-learn 1.6.1 docu...

    Methods for scaling, centering, normalization, binarization, and more. User guide. See the Preprocessing data section for further details.
    scikit-learn.org/stable/api/sklearn.preprocessing.html
    Mon Apr 21 17:07:38 UTC 2025
      125.8K bytes
      Cache
     
Back to top