- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1051 - 1060 of 1,686 for document (0.34 sec)
-
adjusted_mutual_info_score — scikit-learn 1.6.1...
Gallery examples: A demo of K-Means clustering on the handwritten digits data Adjustment for chance in clustering performance evaluation Demo of DBSCAN clustering algorithm Demo of affinity propaga...scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html -
1.3. Kernel ridge regression — scikit-learn 1.6...
Kernel ridge regression (KRR)[M2012] combines Ridge regression and classification(linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the sp...scikit-learn.org/stable/modules/kernel_ridge.html -
6.4. Imputation of missing values — scikit-lear...
For various reasons, many real world datasets contain missing values, often encoded as blanks, NaNs or other placeholders. Such datasets however are incompatible with scikit-learn estimators which ...scikit-learn.org/stable/modules/impute.html -
Hierarchical clustering: structured vs unstruct...
Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see Hierarchical clustering. In a first step, the hierarchical clustering is performed ...scikit-learn.org/stable/auto_examples/cluster/plot_ward_structured_vs_unstructured.html -
d2_absolute_error_score — scikit-learn 1.6.1 do...
Skip to main content Back to top Ctrl + K GitHub Choose version d2_absolute_error_score # sklearn.metrics. d2_absolut...scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_absolute_error_score.html -
Getting Started — scikit-learn 1.6.1 documentation
The purpose of this guide is to illustrate some of the main features that scikit-learn provides. It assumes a very basic working knowledge of machine learning practices (model fitting, predicting, ...scikit-learn.org/stable/getting_started.html -
Frozen Estimators — scikit-learn 1.6.1 document...
scikit-learn.org/stable/auto_examples/frozen/index.html -
Nearest Neighbors — scikit-learn 1.6.1 document...
Examples concerning the sklearn.neighbors module. Approximate nearest neighbors in TSNE Caching nearest neighbors Comparing Nearest Neighbors with and without Neighborhood Components Analysis Dimen...scikit-learn.org/stable/auto_examples/neighbors/index.html -
Cross decomposition — scikit-learn 1.6.1 docume...
Examples concerning the sklearn.cross_decomposition module. Compare cross decomposition methods Principal Component Regression vs Partial Least Squares Regressionscikit-learn.org/stable/auto_examples/cross_decomposition/index.html -
Release Highlights — scikit-learn 1.6.1 documen...
These examples illustrate the main features of the releases of scikit-learn. Release Highlights for scikit-learn 1.6 Release Highlights for scikit-learn 1.5 Release Highlights for scikit-learn 1.4 ...scikit-learn.org/stable/auto_examples/release_highlights/index.html