Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1051 - 1060 of 1,742 for document (0.95 sec)

  1. 1.14. Semi-supervised learning — scikit-learn 1...

    Semi-supervised learning is a situation in which in your training data some of the samples are not labeled. The semi-supervised estimators in sklearn.semi_supervised are able to make use of this ad...
    scikit-learn.org/stable/modules/semi_supervised.html
    Fri Oct 10 15:14:35 UTC 2025
      43.5K bytes
      3 views
      Cache
     
  2. Comparing anomaly detection algorithms for outl...

    This example shows characteristics of different anomaly detection algorithms on 2D datasets. Datasets contain one or two modes (regions of high density) to illustrate the ability of algorithms to c...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_anomaly_comparison.html
    Fri Oct 10 15:14:36 UTC 2025
      119K bytes
      Cache
     
  3. Gaussian process classification (GPC) on iris d...

    This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly ...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html
    Fri Oct 10 15:14:35 UTC 2025
      98.4K bytes
      Cache
     
  4. shuffle — scikit-learn 1.7.2 documentation

    Gallery examples: Prediction Latency Empirical evaluation of the impact of k-means initialization Combine predictors using stacking Early stopping of Stochastic Gradient Descent Approximate nearest...
    scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html
    Thu Oct 09 16:57:48 UTC 2025
      114.6K bytes
      Cache
     
  5. Tags — scikit-learn 1.7.2 documentation

    Gallery examples: Release Highlights for scikit-learn 1.6
    scikit-learn.org/stable/modules/generated/sklearn.utils.Tags.html
    Thu Oct 09 16:57:48 UTC 2025
      110.8K bytes
      1 views
      Cache
     
  6. TargetTags — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version TargetTags # class sklearn.utils. TargetTags ( requir...
    scikit-learn.org/stable/modules/generated/sklearn.utils.TargetTags.html
    Thu Oct 09 16:57:48 UTC 2025
      108.5K bytes
      Cache
     
  7. Preprocessing — scikit-learn 1.7.2 documentation

    Examples concerning the sklearn.preprocessing module. Compare the effect of different scalers on data with outliers Comparing Target Encoder with Other Encoders Demonstrating the different strategi...
    scikit-learn.org/stable/auto_examples/preprocessing/index.html
    Fri Oct 10 15:14:35 UTC 2025
      78.7K bytes
      Cache
     
  8. Clustering — scikit-learn 1.7.2 documentation

    Examples concerning the sklearn.cluster module. A demo of K-Means clustering on the handwritten digits data A demo of structured Ward hierarchical clustering on an image of coins A demo of the mean...
    scikit-learn.org/stable/auto_examples/cluster/index.html
    Fri Oct 10 15:14:33 UTC 2025
      90K bytes
      Cache
     
  9. Decomposition — scikit-learn 1.7.2 documentation

    Examples concerning the sklearn.decomposition module. Blind source separation using FastICA Comparison of LDA and PCA 2D projection of Iris dataset Faces dataset decompositions Factor Analysis (wit...
    scikit-learn.org/stable/auto_examples/decomposition/index.html
    Fri Oct 10 15:14:36 UTC 2025
      80.4K bytes
      Cache
     
  10. LocallyLinearEmbedding — scikit-learn 1.7.2 doc...

    Gallery examples: Visualizing the stock market structure Comparison of Manifold Learning methods Manifold learning on handwritten digits: Locally Linear Embedding, Isomap… Manifold Learning methods...
    scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
    Fri Oct 10 15:14:33 UTC 2025
      136.8K bytes
      Cache
     
Back to top