Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1051 - 1060 of 1,686 for document (0.34 sec)

  1. adjusted_mutual_info_score — scikit-learn 1.6.1...

    Gallery examples: A demo of K-Means clustering on the handwritten digits data Adjustment for chance in clustering performance evaluation Demo of DBSCAN clustering algorithm Demo of affinity propaga...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html
    Mon Apr 21 17:07:39 UTC 2025
      116.7K bytes
      Cache
     
  2. 1.3. Kernel ridge regression — scikit-learn 1.6...

    Kernel ridge regression (KRR)[M2012] combines Ridge regression and classification(linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the sp...
    scikit-learn.org/stable/modules/kernel_ridge.html
    Mon Apr 21 17:07:39 UTC 2025
      38.2K bytes
      1 views
      Cache
     
  3. 6.4. Imputation of missing values — scikit-lear...

    For various reasons, many real world datasets contain missing values, often encoded as blanks, NaNs or other placeholders. Such datasets however are incompatible with scikit-learn estimators which ...
    scikit-learn.org/stable/modules/impute.html
    Mon Apr 21 17:07:39 UTC 2025
      83.8K bytes
      Cache
     
  4. Hierarchical clustering: structured vs unstruct...

    Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see Hierarchical clustering. In a first step, the hierarchical clustering is performed ...
    scikit-learn.org/stable/auto_examples/cluster/plot_ward_structured_vs_unstructured.html
    Mon Apr 21 17:07:39 UTC 2025
      101.8K bytes
      Cache
     
  5. d2_absolute_error_score — scikit-learn 1.6.1 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version d2_absolute_error_score # sklearn.metrics. d2_absolut...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.d2_absolute_error_score.html
    Mon Apr 21 17:07:39 UTC 2025
      113.6K bytes
      Cache
     
  6. Getting Started — scikit-learn 1.6.1 documentation

    The purpose of this guide is to illustrate some of the main features that scikit-learn provides. It assumes a very basic working knowledge of machine learning practices (model fitting, predicting, ...
    scikit-learn.org/stable/getting_started.html
    Mon Apr 21 17:07:39 UTC 2025
      48K bytes
      Cache
     
  7. Frozen Estimators — scikit-learn 1.6.1 document...

    Examples concerning the sklearn.frozen module. Examples of Using FrozenEstimator
    scikit-learn.org/stable/auto_examples/frozen/index.html
    Mon Apr 21 17:07:39 UTC 2025
      73.5K bytes
      Cache
     
  8. Nearest Neighbors — scikit-learn 1.6.1 document...

    Examples concerning the sklearn.neighbors module. Approximate nearest neighbors in TSNE Caching nearest neighbors Comparing Nearest Neighbors with and without Neighborhood Components Analysis Dimen...
    scikit-learn.org/stable/auto_examples/neighbors/index.html
    Mon Apr 21 17:07:39 UTC 2025
      82.8K bytes
      Cache
     
  9. Cross decomposition — scikit-learn 1.6.1 docume...

    Examples concerning the sklearn.cross_decomposition module. Compare cross decomposition methods Principal Component Regression vs Partial Least Squares Regression
    scikit-learn.org/stable/auto_examples/cross_decomposition/index.html
    Mon Apr 21 17:07:39 UTC 2025
      74.5K bytes
      Cache
     
  10. Release Highlights — scikit-learn 1.6.1 documen...

    These examples illustrate the main features of the releases of scikit-learn. Release Highlights for scikit-learn 1.6 Release Highlights for scikit-learn 1.5 Release Highlights for scikit-learn 1.4 ...
    scikit-learn.org/stable/auto_examples/release_highlights/index.html
    Mon Apr 21 17:07:39 UTC 2025
      80.3K bytes
      Cache
     
Back to top