Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1031 - 1040 of 1,682 for document (0.39 sec)

  1. 2. Unsupervised learning — scikit-learn 1.6.1 d...

    Gaussian mixture models- Gaussian Mixture, Variational Bayesian Gaussian Mixture., Manifold learning- Introduction, Isomap, Locally Linear Embedding, Modified Locally Linear Embedding, Hessian Eige...
    scikit-learn.org/stable/unsupervised_learning.html
    Sat Apr 19 00:31:22 UTC 2025
      37.8K bytes
      Cache
     
  2. is_outlier_detector — scikit-learn 1.6.1 docume...

    Skip to main content Back to top Ctrl + K GitHub Choose version is_outlier_detector # sklearn.base. is_outlier_detect...
    scikit-learn.org/stable/modules/generated/sklearn.base.is_outlier_detector.html
    Mon Apr 21 17:07:39 UTC 2025
      105.1K bytes
      Cache
     
  3. Demonstrating the different strategies of KBins...

    This example presents the different strategies implemented in KBinsDiscretizer: ‘uniform’: The discretization is uniform in each feature, which means that the bin widths are constant in each dimens...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_strategies.html
    Mon Apr 21 17:07:39 UTC 2025
      100.5K bytes
      Cache
     
  4. parametrize_with_checks — scikit-learn 1.6.1 do...

    Gallery examples: Release Highlights for scikit-learn 1.6 Release Highlights for scikit-learn 0.22
    scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_checks.parametrize_with_checks....
    Mon Apr 21 17:07:40 UTC 2025
      113.3K bytes
      Cache
     
  5. Agglomerative clustering with and without struc...

    This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. There are two advantages of imposing a ...
    scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html
    Mon Apr 21 17:07:38 UTC 2025
      97.5K bytes
      Cache
     
  6. Tweedie regression on insurance claims — scikit...

    This example illustrates the use of Poisson, Gamma and Tweedie regression on the French Motor Third-Party Liability Claims dataset, and is inspired by an R tutorial 1. In this dataset, each sample ...
    scikit-learn.org/stable/auto_examples/linear_model/plot_tweedie_regression_insurance_claims.html
    Mon Apr 21 17:07:39 UTC 2025
      181.1K bytes
      Cache
     
  7. Demo of OPTICS clustering algorithm — scikit-le...

    Finds core samples of high density and expands clusters from them. This example uses data that is generated so that the clusters have different densities. The OPTICS is first used with its Xi clust...
    scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
    Mon Apr 21 17:07:39 UTC 2025
      107.5K bytes
      1 views
      Cache
     
  8. Robust linear estimator fitting — scikit-learn ...

    Here a sine function is fit with a polynomial of order 3, for values close to zero. Robust fitting is demonstrated in different situations: No measurement errors, only modelling errors (fitting a s...
    scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html
    Mon Apr 21 17:07:38 UTC 2025
      101.5K bytes
      Cache
     
  9. Theil-Sen Regression — scikit-learn 1.6.1 docum...

    Computes a Theil-Sen Regression on a synthetic dataset. See Theil-Sen estimator: generalized-median-based estimator for more information on the regressor. Compared to the OLS (ordinary least square...
    scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html
    Mon Apr 21 17:07:39 UTC 2025
      103.1K bytes
      Cache
     
  10. Getting Started — scikit-learn 1.6.1 documentation

    The purpose of this guide is to illustrate some of the main features that scikit-learn provides. It assumes a very basic working knowledge of machine learning practices (model fitting, predicting, ...
    scikit-learn.org/stable/getting_started.html
    Mon Apr 21 17:07:39 UTC 2025
      48K bytes
      Cache
     
Back to top