Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 991 - 1000 of 1,702 for document (0.42 sec)

  1. 2.1. Gaussian mixture models — scikit-learn 1.7...

    sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied and full covariance matrices supported), sample them, and estimate them from data. Facilit...
    scikit-learn.org/stable/modules/mixture.html
    Thu Jul 03 11:42:06 UTC 2025
      58.5K bytes
      Cache
     
  2. 14. External Resources, Videos and Talks — scik...

    The scikit-learn MOOC: If you are new to scikit-learn, or looking to strengthen your understanding, we highly recommend the scikit-learn MOOC (Massive Open Online Course). The MOOC, created and mai...
    scikit-learn.org/stable/presentations.html
    Thu Jul 03 11:42:07 UTC 2025
      33.8K bytes
      Cache
     
  3. homogeneity_completeness_v_measure — scikit-lea...

    Skip to main content Back to top Ctrl + K GitHub Choose version homogeneity_completeness_v_measure # sklearn.metrics....
    scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html
    Thu Jul 03 11:42:05 UTC 2025
      110.4K bytes
      Cache
     
  4. Post pruning decision trees with cost complexit...

    The DecisionTreeClassifier provides parameters such as min_samples_leaf and max_depth to prevent a tree from overfiting. Cost complexity pruning provides another option to control the size of a tre...
    scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
    Thu Jul 03 11:42:05 UTC 2025
      102.8K bytes
      Cache
     
  5. top_k_accuracy_score — scikit-learn 1.7.0 docum...

    Skip to main content Back to top Ctrl + K GitHub Choose version top_k_accuracy_score # sklearn.metrics. top_k_accurac...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.top_k_accuracy_score.html
    Thu Jul 03 11:42:06 UTC 2025
      112.5K bytes
      1 views
      Cache
     
  6. 7.1. Pipelines and composite estimators — sciki...

    To build a composite estimator, transformers are usually combined with other transformers or with predictors(such as classifiers or regressors). The most common tool used for composing estimators i...
    scikit-learn.org/stable/modules/compose.html
    Thu Jul 03 11:42:06 UTC 2025
      112.5K bytes
      Cache
     
  7. johnson_lindenstrauss_min_dim — scikit-learn 1....

    Gallery examples: The Johnson-Lindenstrauss bound for embedding with random projections
    scikit-learn.org/stable/modules/generated/sklearn.random_projection.johnson_lindenstrauss_min_dim...
    Thu Jul 03 11:42:05 UTC 2025
      110.9K bytes
      Cache
     
  8. make_sparse_spd_matrix — scikit-learn 1.7.0 doc...

    Gallery examples: Sparse inverse covariance estimation
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html
    Thu Jul 03 11:42:06 UTC 2025
      110.8K bytes
      Cache
     
  9. enable_halving_search_cv — scikit-learn 1.7.0 d...

    Enables Successive Halving search-estimators The API and results of these estimators might change without any deprecation cycle. Importing this file dynamically sets the HalvingRandomSearchCV and H...
    scikit-learn.org/stable/modules/generated/sklearn.experimental.enable_halving_search_cv.html
    Thu Jul 03 11:42:06 UTC 2025
      105.5K bytes
      Cache
     
  10. cosine_similarity — scikit-learn 1.7.0 document...

    Gallery examples: Plot classification boundaries with different SVM Kernels
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
    Thu Jul 03 11:42:05 UTC 2025
      109.4K bytes
      Cache
     
Back to top