Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 51 - 60 of 266 for v (0.07 sec)

  1. KernelRidge — scikit-learn 1.7.1 documentation

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
    Fri Aug 29 15:59:15 UTC 2025
      142.4K bytes
      Cache
     
  2. ARDRegression — scikit-learn 1.7.1 documentation

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html
    Fri Aug 29 15:59:15 UTC 2025
      141.3K bytes
      Cache
     
  3. Data tiers | Elastic Docs

    v=true to check that the restored..._cat/indices/<backing-index-name>?v=true to check. Once your data...
    www.elastic.co/docs/manage-data/lifecycle/data-tiers
    Fri Aug 29 23:33:45 UTC 2025
      137.3K bytes
      Cache
     
  4. RidgeCV — scikit-learn 1.7.1 documentation

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
    Fri Aug 29 15:59:15 UTC 2025
      150K bytes
      Cache
     
  5. NuSVR — scikit-learn 1.7.1 documentation

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html
    Thu Aug 28 22:04:16 UTC 2025
      142.4K bytes
      Cache
     
  6. Lasso — scikit-learn 1.7.1 documentation

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
    Fri Aug 29 15:59:16 UTC 2025
      167.5K bytes
      Cache
     
  7. ElasticNetCV — scikit-learn 1.7.1 documentation

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html
    Fri Aug 29 15:59:15 UTC 2025
      166.4K bytes
      Cache
     
  8. LassoLarsCV — scikit-learn 1.7.1 documentation

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html
    Fri Aug 29 15:59:15 UTC 2025
      145.6K bytes
      Cache
     
  9. decomposition.rst.txt

    V^*) = \underset{U, V}{\operatorname{arg\,min\,}}...multiply it with :math:`V_k`: .. math:: X' = X V_k .. note:: Most treatments...
    scikit-learn.org/stable/_sources/modules/decomposition.rst.txt
    Fri Aug 29 15:59:16 UTC 2025
      45.8K bytes
      6 views
     
  10. BaggingRegressor — scikit-learn 1.7.1 documenta...

    is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...
    scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
    Fri Aug 29 15:59:15 UTC 2025
      147.6K bytes
      Cache
     
Back to top