- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 41 - 50 of 908 for c (0.3 sec)
-
IncrementalPCA — scikit-learn 1.7.0 documentation
Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or htt...Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5, section...scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html -
plot_classifier_comparison.rst.txt
C=0.025, random_state=42), SVC(gamma=2, C=1, random_state=42),...ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k")...scikit-learn.org/stable/_sources/auto_examples/classification/plot_classifier_comparison.rst.txt -
8.3. Generated datasets — scikit-learn 1.7.0 do...
c = y ) plt . title ( "Three normally-distributed...scatter ( X [:, 0 ], X [:, 1 ], c = Y ) axs [ i ] . set_title (...scikit-learn.org/stable/datasets/sample_generators.html -
plot_classifier_comparison.ipynb
C=0.025, random_state=42),\n SVC(gamma=2, C=1, random_state=42),\n...ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors=\"k\")\n...scikit-learn.org/stable/_downloads/3438aba177365cb595921cf18806dfa7/plot_classifier_comparison.ipynb -
How to operationalize generative AI | Elastic
www.elastic.co/portfolio/operationalizing-generative-ai-strategic-guide -
pydata-sphinx-theme.js
i=c(n,o);return 0!==i?i:a&&s?c(a.split("."),s.... i=o&&e.preferred,c=!o&&!r&&e.match;(i||c)&&(a.classList.add...scikit-learn.org/stable/_static/scripts/pydata-sphinx-theme.js -
SVC — scikit-learn 1.7.0 documentation
the parameter C of class i to class_weight[i]*C for SVC. If not...class sklearn.svm. SVC ( * , C = 1.0 , kernel = 'rbf' , degree...scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html -
QuadraticDiscriminantAnalysis — scikit-learn 1....
Returns : C ndarray of shape (n_samples,)...vectors X. The predicted class C for each sample in X is returned....scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnal... -
cross_validation.rst.txt
"c", "c", "c", "d", "d", "d"] >>> groups...= ["a", "b", "b", "b", "c", "c", "c", "a"] >>> groups = [1, 1,...scikit-learn.org/stable/_sources/modules/cross_validation.rst.txt -
auto_examples_python.zip
"P(C)", "P(w0|C)", "P(w1|C)", sep="\t") for k,...[] for c in cs: clf.set_params(logisticregression__C=c) clf.fit(X,...scikit-learn.org/stable/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip