- Sort Score
- Num 10 results
- Language All
- Labels All
Results 561 - 570 of over 10,000 for 2 (1.39 seconds)
-
hamming_loss — scikit-learn 1.8.0 documen...
2 , 3 , 4 ] >>> y_true = [ 2 , 2 , 3 , 4 ]...[ 1 , 1 ]]), np . zeros (( 2 , 2 ))) 0.75 Gallery examples #...scikit-learn.org/stable/modules/generated/sklearn.metrics.hamming_loss.html -
johnson_lindenstrauss_min_dim — scikit-le...
v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2 Where...>= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3) Note that the number...scikit-learn.org/stable/modules/generated/sklearn.random_projection.johnson_lindenstrauss_min_dim... -
Probability Calibration curves — scikit-l...
add_subplot ( gs [: 2 , : 2 ]) calibration_displays = {}...histogram grid_positions = [( 2 , 0 ), ( 2 , 1 ), ( 3 , 0 ), ( 3 ,...scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html -
Bunch — scikit-learn 1.8.0 documentation
b = 2 ) >>> b [ 'b' ] 2 >>>...>>> b . b 2 >>> b . a = 3 >>> b [ 'a'...scikit-learn.org/stable/modules/generated/sklearn.utils.Bunch.html -
OPTICS — scikit-learn 1.8.0 documentation
2 (1999): 49-60. [ 2 ] Schubert, Erich, Michael...>>> X = np . array ([[ 1 , 2 ], [ 2 , 5 ], [ 3 , 6 ], ... [ 8...scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html -
RegressorChain — scikit-learn 1.8.0 docum...
2 ], [ 1 , 1 ], [ 2 , 0 ]] >>> chain...predict ( X ) array([[0., 2.], [1., 1.], [2., 0.]]) fit ( X , Y ,...scikit-learn.org/stable/modules/generated/sklearn.multioutput.RegressorChain.html -
PassiveAggressiveRegressor — scikit-learn...
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...[1, n_features] if n_classes == 2 else [n_classes, n_features] Weights...scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html -
Fess Installationsanleitung
Installation von OpenSearch Schritt 2: Installation von Fess Schritt...Docker Compose-Dateien Schritt 2: Überprüfung der Docker Compose-Dateien...fess.codelibs.org/de/15.3/install/index.html -
Feature discretization — scikit-learn 1.8...
n_features = 2 , n_redundant = 0 , n_informative = 2 , random_state...GradientBoostingClas: 0.84 SVC: 0.84 dataset 2 --------- LogisticRegression:...scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html -
One-class SVM with non-linear kernel (RBF) R...
2 ) X_train = np . r_ [ X + 2 , X - 2 ] # Generate...randn ( 20 , 2 ) X_test = np . r_ [ X + 2 , X - 2 ] # Generate...scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html