Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 431 - 440 of 2,485 for 2 (0.86 sec)

  1. sklearn.calibration — scikit-learn 1.7.2 docume...

    Methods for calibrating predicted probabilities. User guide. See the Probability calibration section for further details. Visualization:
    scikit-learn.org/stable/api/sklearn.calibration.html
    Mon Nov 10 15:11:18 UTC 2025
      115.4K bytes
      Cache
     
  2. FeatureUnion — scikit-learn 1.7.2 documentation

    n_components = 2 ))]) >>> X = [[ 0. , 1. , 3 ], [ 2. , 2. , 5 ]] >>>...parameters. Added in version 1.2. n_features_in_ int Number of...
    scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html
    Mon Nov 10 15:11:19 UTC 2025
      134.5K bytes
      Cache
     
  3. OutputCodeClassifier — scikit-learn 1.7.2 docum...

    Artificial Intelligence Research 2, 1995. [ 2 ] “The error coding method...n_features = 4 , ... n_informative = 2 , n_redundant = 0 , ... random_state...
    scikit-learn.org/stable/modules/generated/sklearn.multiclass.OutputCodeClassifier.html
    Mon Nov 10 15:11:19 UTC 2025
      132.1K bytes
      Cache
     
  4. Faces recognition example using eigenfaces and ...

    for machine learning we use the 2 data directly (as relative pixel...figure ( figsize = ( 1.8 * n_col , 2.4 * n_row )) plt . subplots_adjust...
    scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
    Mon Nov 10 15:11:18 UTC 2025
      113.1K bytes
      Cache
     
  5. PoissonRegressor — scikit-learn 1.7.2 documenta...

    determination R^2. R^2 uses squared error and D^2 uses the deviance...PoissonRegressor () >>> X = [[ 1 , 2 ], [ 2 , 3 ], [ 3 , 4 ], [ 4 , 3...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.PoissonRegressor.html
    Mon Nov 10 15:11:18 UTC 2025
      139.5K bytes
      Cache
     
  6. MinMaxScaler — scikit-learn 1.7.2 documentation

    transform ([[ 2 , 2 ]])) [[1.5 0. ]] fit ( X , y...MinMaxScaler >>> data = [[ - 1 , 2 ], [ - 0.5 , 6 ], [ 0 , 10 ],...
    scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
    Mon Nov 10 15:11:15 UTC 2025
      143.2K bytes
      Cache
     
  7. roc_curve — scikit-learn 1.7.2 documentation

    2 , 2 ]) >>> scores = np . array ([...Returns : fpr ndarray of shape (>2,) Increasing false positive rates...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
    Mon Nov 10 15:11:19 UTC 2025
      117K bytes
      Cache
     
  8. PLSRegression — scikit-learn 1.7.2 documentation

    [ 2. , 2. , 2. ], [ 2. , 5. , 4. ]] >>> y =...= [[ 0.1 , - 0.2 ], [ 0.9 , 1.1 ], [ 6.2 , 5.9 ], [ 11.9 , 12.3...
    scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
    Mon Nov 10 15:11:15 UTC 2025
      160.1K bytes
      Cache
     
  9. rand_score — scikit-learn 1.7.2 documentation

    of Classification 2, 193–218 (1985). . [ 2 ] Wikipedia: Simple...predicted and true clusterings [1] [2] . The raw RI score [3] is: RI...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html
    Mon Nov 10 15:11:15 UTC 2025
      110.6K bytes
      Cache
     
  10. top_k_accuracy_score — scikit-learn 1.7.2 docum...

    2 , 2 ]) >>> y_score = np . array ([[ 0.5 , 0.2 , 0.2 ], #...top 2 ... [ 0.3 , 0.4 , 0.2 ], # 1 is in top 2 ... [ 0.2 , 0.4...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.top_k_accuracy_score.html
    Mon Nov 10 15:11:18 UTC 2025
      112.5K bytes
      1 views
      Cache
     
Back to top