- Sort Score
- Num 10 results
- Language All
- Labels All
Results 131 - 140 of 780 for v (0.04 seconds)
-
LinearSVR — scikit-learn 1.8.0 documentation
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html -
1.1. Linear Models — scikit-learn 1.8.0 d...
v) \geq P(w) - P(w^\star)\) . It is given by \(G(w, v) = P(w)...P(w) - D(v)\) with dual objective function \[D(v) = \frac{1}...scikit-learn.org/stable/modules/linear_model.html -
PLSCanonical — scikit-learn 1.8.0 documen...
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSCanonical.html -
DecisionTreeRegressor — scikit-learn 1.8....
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html -
KNeighborsRegressor — scikit-learn 1.8.0 ...
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html -
Lasso model selection: AIC-BIC / cross-validati...
scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html -
MLPRegressor — scikit-learn 1.8.0 documen...
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html -
故障排除
v 确认 Fess 的索引是否存在。 确认爬取日志 从管理页面...http://localhost:9200/_cat/indices?v...fess.codelibs.org/zh-cn/15.3/install/troubleshooting.html -
PLSRegression — scikit-learn 1.8.0 docume...
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html -
BaggingRegressor — scikit-learn 1.8.0 doc...
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html