- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 61 - 70 of 273 for v (0.03 sec)
-
Lasso — scikit-learn 1.7.2 documentation
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html -
LassoLarsIC — scikit-learn 1.7.2 documentation
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html -
PLSCanonical — scikit-learn 1.7.2 documentation
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSCanonical.html -
KNeighborsRegressor — scikit-learn 1.7.2 docume...
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html -
RidgeCV — scikit-learn 1.7.2 documentation
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html -
TheilSenRegressor — scikit-learn 1.7.2 document...
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html -
Data tiers | Elastic Docs
v=true to check that the restored..._cat/indices/<backing-index-name>?v=true to check. Once your data...www.elastic.co/docs/manage-data/lifecycle/data-tiers -
DummyRegressor — scikit-learn 1.7.2 documentation
coefficient R^2 is defined as (1 - u/v) , where u is the residual sum...((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true...scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html -
OrthogonalMatchingPursuitCV — scikit-learn 1.7....
is defined as \((1 - \frac{u}{v})\) , where \(u\) is the residual...((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares...scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.html -
plot_kmeans_digits.ipynb
score\ncompl completeness score\nv-meas V measure\nARI adjusted Rand index\nAMI...metrics.completeness_score,\n metrics.v_measure_score,\n metrics.adjusted_rand_score,\n...scikit-learn.org/stable/_downloads/6bf322ce1724c13e6e0f8f719ebd253c/plot_kmeans_digits.ipynb