- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1 - 10 of 47 for 2 (0.89 seconds)
-
auto_examples_python.zip
- l / 2.0) ** 2 + (y - l / 2.0) ** 2 < (l / 2.0) ** 2 mask =...+ 1, figsize=(4 * 2.2, n_classifiers * 2.2), ) evaluation_results...scikit-learn.org/stable/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip -
plot_classifier_comparison.zip
make_classification( n_features=2, n_redundant=0, n_informative=2, random_state=1,...rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape)...scikit-learn.org/stable/_downloads/ce35bcc69acbd491cf7ac77fa17889d5/plot_classifier_comparison.zip -
styles.css
mr-2{margin-right:calc(var(--spacing)*2)}.mb-2{margin-b...spacing)*2)}.ml-2{margin-left:calc(var(--spacing)*2)}.ml-4{m...www.elastic.co/docs/_static/styles.css -
sphinx-design.min.css
sd-g-2,.sd-gy-2{--sd-gutter-y: 0.5rem}.sd-g-2,.sd-gx-2{--sd-gutter-x:...!important}.sd-p-2{padding:.5rem !important}.sd-pt-2,.sd-py-2{padding-top:.5rem...scikit-learn.org/stable/_static/sphinx-design.min.css -
plot_classifier_comparison.py
make_classification( n_features=2, n_redundant=0, n_informative=2, random_state=1,...rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape)...scikit-learn.org/stable/_downloads/2da0534ab0e0c8241033bcc2d912e419/plot_classifier_comparison.py -
index.css
--sk-landing-bg-2: var(--sk-cyan-shades-2); --sk-landing-bg-3:...var(--sk-cyan-shades-3); --sk-landing-bg-2: var(--sk-cyan); --sk-landing-bg-3:...scikit-learn.org/stable/_static/styles/index.css -
plot_multi_metric_evaluation.zip
range(2, 403, 20)}, scoring=scoring, refit="AUC", n_jobs=2, re...ax.plot( [ X_axis[best_index], ] * 2, [0, best_score], linestyle="-.",...scikit-learn.org/stable/_downloads/535778bfbc9b4881da3e662bc2ea8484/plot_multi_metric_evaluation.zip -
plot_hgbt_regression.ipynb
showcasing all points except 2 and 6 in a real life\nsetting.\n"...label=\"recorded average\", linewidth=2, ax=ax)\n\nfor idx, max_iter in...scikit-learn.org/stable/_downloads/cb9a8a373677fb481fe43a11d8fa0e94/plot_hgbt_regression.ipynb -
plot_multi_metric_evaluation.py
range(2, 403, 20)}, scoring=scoring, refit="AUC", n_jobs=2, re...ax.plot( [ X_axis[best_index], ] * 2, [0, best_score], linestyle="-.",...scikit-learn.org/stable/_downloads/dedbcc9464f3269f4f012f4bfc7d16da/plot_multi_metric_evaluation.py -
plot_multi_metric_evaluation.ipynb
param_grid={\"min_samples_split\": range(2, 403, 20)},\n scoring=scoring,\n...scoring=scoring,\n refit=\"AUC\",\n n_jobs=2,\n return_train_score=True,\n)\ngs.fit(X,...scikit-learn.org/stable/_downloads/f57e1ee55d4c7a51949d5c26b3af07bb/plot_multi_metric_evaluation....