Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 881 - 890 of 3,212 for 2 (0.15 sec)

  1. Gradient Boosting regularization — scikit-learn...

    2" , "turquoise" , { "learning_rate" : 0.2 , "subsample"..."learning_rate=0.2, subsample=0.5" , "gray" , { "learning_rate" : 0.2 , "subsample"...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html
    Fri Sep 12 13:34:56 UTC 2025
      96.3K bytes
      Cache
     
  2. hinge_loss — scikit-learn 1.7.2 documentation

    ([[ - 2 ], [ 3 ], [ 0.5 ]]) >>> pred_decision array([-2.18, 2.36,...[ 1 ], [ 2 ], [ 3 ]]) >>> Y = np . array ([ 0 , 1 , 2 , 3 ]) >>>...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.hinge_loss.html
    Fri Sep 12 13:34:55 UTC 2025
      114.8K bytes
      Cache
     
  3. Nested versus non-nested cross-validation — sci...

    This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested cross-validation (CV) is often used to train a model in which hyperparameters al...
    scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
    Fri Sep 12 13:34:56 UTC 2025
      102.2K bytes
      Cache
     
  4. enet_path — scikit-learn 1.7.2 documentation

    it is: 1 / ( 2 * n_samples ) * || y - Xw ||^ 2_2 + alpha * l1_ratio...|| w ||^ 2_2 For multi-output tasks it is: ( 1 / ( 2 * n_samples...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.enet_path.html
    Fri Sep 12 13:34:55 UTC 2025
      120K bytes
      Cache
     
  5. unique_labels — scikit-learn 1.7.2 documentation

    2 , 3 , 4 ], [ 2 , 2 , 3 , 4 ]) array([1, 2, 3, 4]) >>>...unique_labels ([ 1 , 2 , 10 ], [ 5 , 11 ]) array([ 1, 2, 5, 10, 11])...
    scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.unique_labels.html
    Fri Sep 12 13:34:49 UTC 2025
      106.8K bytes
      Cache
     
  6. sklearn.model_selection — scikit-learn 1.7.2 do...

    Tools for model selection, such as cross validation and hyper-parameter tuning. User guide. See the Cross-validation: evaluating estimator performance, Tuning the hyper-parameters of an estimator, ...
    scikit-learn.org/stable/api/sklearn.model_selection.html
    Fri Sep 12 13:34:53 UTC 2025
      129K bytes
      Cache
     
  7. sklearn.neural_network — scikit-learn 1.7.2 doc...

    Models based on neural networks. User guide. See the Neural network models (supervised) and Neural network models (unsupervised) sections for further details.
    scikit-learn.org/stable/api/sklearn.neural_network.html
    Fri Sep 12 13:34:55 UTC 2025
      115.3K bytes
      Cache
     
  8. enable_iterative_imputer — scikit-learn 1.7.2 d...

    Enables IterativeImputer The API and results of this estimator might change without any deprecation cycle. Importing this file dynamically sets IterativeImputer as an attribute of the impute module:
    scikit-learn.org/stable/modules/generated/sklearn.experimental.enable_iterative_imputer.html
    Fri Sep 12 13:34:55 UTC 2025
      104.6K bytes
      Cache
     
  9. l1_min_c — scikit-learn 1.7.2 documentation

    Gallery examples: Regularization path of L1- Logistic Regression
    scikit-learn.org/stable/modules/generated/sklearn.svm.l1_min_c.html
    Fri Sep 12 13:34:53 UTC 2025
      110.7K bytes
      Cache
     
  10. sklearn.feature_selection — scikit-learn 1.7.2 ...

    Feature selection algorithms. These include univariate filter selection methods and the recursive feature elimination algorithm. User guide. See the Feature selection section for further details.
    scikit-learn.org/stable/api/sklearn.feature_selection.html
    Fri Sep 12 13:34:53 UTC 2025
      121.4K bytes
      Cache
     
Back to top