- Sort Score
 - Result 10 results
 - Languages All
 - Labels All
 
Results 841 - 850 of 4,438 for * (3.03 sec)
- 
				
HuberRegressor — scikit-learn 1.7.2 documentation
HuberRegressor () . fit ( X , y ) >>> huber . score ( X , y ) -7.284 >>>...coef ) True coefficients: [20.4923... 34.1698...] >>> print ( "Huber...scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html - 
				
mutual_info_score — scikit-learn 1.7.2 document...
= [ 0 , 1 , 1 , 0 , 1 , 0 ] >>> labels_pred = [ 0 , 1 , 0 , 0...switching \(U\) (i.e label_true ) with \(V\) (i.e. label_pred ) will...scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html - 
				
l1_min_c — scikit-learn 1.7.2 documentation
'squared_hinge' , fit_intercept = True ) : .4f } " ) 0.0044 Gallery examples...l1_min_c ( X , y , * , loss = 'squared_hinge' , fit_intercept = True...scikit-learn.org/stable/modules/generated/sklearn.svm.l1_min_c.html - 
				
MaxAbsScaler — scikit-learn 1.7.2 documentation
2. ], ... [ 2. , 0. , 0. ], ... [ 0. , 1. , - 1. ]] >>> transformer...transformer . transform ( X ) array([[ 0.5, -1. , 1. ], [ 1. , 0. , 0....scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html - 
				
DummyRegressor — scikit-learn 1.7.2 documentation
X = np . array ([ 1.0 , 2.0 , 3.0 , 4.0 ]) >>> y = np . array...array ([ 2.0 , 3.0 , 5.0 , 10.0 ]) >>> dummy_regr = DummyRegressor...scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html - 
				
SimpleImputer — scikit-learn 1.7.2 documentation
transform ( X )) [[ 7. 2. 3. ] [ 4. 3.5 6. ] [10. 3.5 9. ]] For...imp_mean . fit ([[ 7 , 2 , 3 ], [ 4 , np . nan , 6 ], [ 10 , 5 , 9...scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html - 
				
BernoulliRBM — scikit-learn 1.7.2 documentation
array ([[ 0 , 0 , 0 ], [ 0 , 1 , 1 ], [ 1 , 0 , 1 ], [ 1 , 1 , 1 ]])...nets. Neural Computation 18, pp 1527-1554. https://www.cs.tor...scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html - 
				
load_iris — scikit-learn 1.7.2 documentation
data . target [[ 10 , 25 , 50 ]] array([0, 0, 1]) >>> list ( data...data . target_names ) [np.str_('setosa'), np.str_('versicolor'),...scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html - 
				
config_context — scikit-learn 1.7.2 documentation
print ‘SVC()’, but would print ‘SVC(C=1.0, cache_size=200, …)’...float ( 'nan' )]) Traceback (most recent call last): ... ValueError...scikit-learn.org/stable/modules/generated/sklearn.config_context.html - 
				
MinCovDet — scikit-learn 1.7.2 documentation
real_cov = np . array ([[ .8 , .3 ], ... [ .3 , .4 ]]) >>> rng =...>>> cov . covariance_ array([[0.7411, 0.2535], [0.2535, 0.3053]])...scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html