- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 811 - 820 of 2,002 for = (0.07 sec)
-
Probability Calibration for 3-class classificat...
y = make_blobs ( n_samples = 2000 , n_features = 2 , centers...centers = 3 , random_state = 42 , cluster_std = 5.0 ) X_train ,...scikit-learn.org/stable/auto_examples/calibration/plot_calibration_multiclass.html -
Two-class AdaBoost — scikit-learn 1.7.0 documen...
[ y == i ], bins = 10 , range = plot_range , facecolor = c ,...n_features = 2 , n_classes = 2 , random_state = 1 ) X2 , y2 = make_gaussian_quantiles...scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html -
Comparing anomaly detection algorithms for outl...
( left = 0.02 , right = 0.98 , bottom = 0.001 , top = 0.96 ,..., wspace = 0.05 , hspace = 0.01 ) plot_num = 1 rng = np . random...scikit-learn.org/stable/auto_examples/miscellaneous/plot_anomaly_comparison.html -
Developing scikit-learn estimators — scikit-lea...
method: clf2 = SGDClassifier ( alpha = 2.3 ) clf3 = SGDClassifier...self , param1 = 1 , param2 = 2 ): self . param1 = param1 self ....scikit-learn.org/stable/developers/develop.html -
Varying regularization in Multi-layer Perceptro...
( solver = "lbfgs" , alpha = alpha , random_state = 1 , max_iter...max_iter = 2000 , early_stopping = True , hidden_layer_sizes = [ 10...scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html -
RationalQuadratic — scikit-learn 1.7.0 document...
length_scale = 1.0 , alpha = 1.0 , length_scale_bounds = (1e-05, 100000.0)...>>> X , y = load_iris ( return_X_y = True ) >>> kernel = RationalQuadratic...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html -
Comparison of kernel ridge and Gaussian process...
label = "True signal" , linewidth = 2 , linestyle = "dashed"...), label = "Kernel ridge" , linewidth = 2 , linestyle = "dashdot"...scikit-learn.org/stable/auto_examples/gaussian_process/plot_compare_gpr_krr.html -
Ridge coefficients as a function of the L2 Regu...
w = make_regression ( n_samples = 100 , n_features = 10 ,...n_informative = 8 , coef = True , random_state = 1 ) # Obtain...scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html -
Bisecting K-Means and Regular K-Means Performan...
data n_samples = 10000 random_state = 0 X , _ = make_blobs ( n_samples...n_samples = n_samples , centers = 2 , random_state = random_state...scikit-learn.org/stable/auto_examples/cluster/plot_bisect_kmeans.html -
MetaFilter | Community Weblog
<div class="svg-sprite" id="svg-sprite-container" style="display:none"></div>...type="text/javascript"> !function() { var static_server = 'dh...www.metafilter.com/