Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 61 - 70 of over 10,000 for 1 (0.11 seconds)

  1. CountVectorizer — scikit-learn 1.8.0 docu...

    [[0 1 1 1 0 0 1 0 1] [0 2 0 1 0 1 1 0 1] [1 0 0 1 1 0 1 1 1] [0...[[0 0 1 1 0 0 1 0 0 0 0 1 0] [0 1 0 1 0 1 0 1 0 0 1 0 0] [1 0 0...
    scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
    Mon Dec 22 11:58:29 GMT 2025
      143.8K bytes
      Cache
     
  2. completeness_score — scikit-learn 1.8.0 d...

    1 , 1 ], [ 1 , 1 , 0 , 0 ]) 1.0 Non-perfect labelings...completeness_score ([ 0 , 0 , 1 , 1 ], [ 0 , 1 , 0 , 1 ])) 0.0 >>>...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html
    Mon Dec 22 11:58:29 GMT 2025
      114.9K bytes
      Cache
     
  3. brier_score_loss — scikit-learn 1.8.0 doc...

    y_true in {-1, 1} or {0, 1}, pos_label defaults to 1; else if y_true...defined as: \[\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{C}(y_{ic} - \hat{p}_{ic})^{2}\]...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html
    Mon Dec 22 11:58:29 GMT 2025
      120.4K bytes
      Cache
     
  4. sparse_encode — scikit-learn 1.8.0 docume...

    1 , 0 ], ... [ - 1 , - 1 , 2 ], ... [ 1 , 1 , 1 ], ......>>> X = np . array ([[ - 1 , - 1 , - 1 ], [ 0 , 0 , 3 ]]) >>>...
    scikit-learn.org/stable/modules/generated/sklearn.decomposition.sparse_encode.html
    Mon Dec 22 11:58:31 GMT 2025
      119.2K bytes
      Cache
     
  5. LabelBinarizer — scikit-learn 1.8.0 docum...

    array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) fit ( y )...fit ( np . array ([[ 0 , 1 , 1 ], [ 1 , 0 , 0 ]])) LabelBinarizer()...
    scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
    Mon Dec 22 11:58:29 GMT 2025
      136K bytes
      Cache
     
  6. precision_score — scikit-learn 1.8.0 docu...

    [ 1 , 1 , 1 ], [ 0 , 1 , 1 ]] >>> y_pred...= [[ 0 , 0 , 0 ], [ 1 , 1 , 1 ], [ 1 , 1 , 0 ]] >>>...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
    Mon Dec 22 11:58:31 GMT 2025
      126.1K bytes
      Cache
      Similar Results (1)
     
  7. NearestNeighbors — scikit-learn 1.8.0 doc...

    () array([[1., 0., 1.], [0., 1., 1.], [1., 0., 1.]]) radius_neighbors...() array([[1., 0., 1.], [0., 1., 0.], [1., 0., 1.]]) set_params...
    scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
    Mon Dec 22 11:58:31 GMT 2025
      152.2K bytes
      Cache
     
  8. polynomial_kernel — scikit-learn 1.8.0 do...

    [ 1 , 1 , 1 ]] >>> Y = [[ 1 , 0 , 0 ], [ 1 , 1 , 0..., degree = 2 ) array([[1. , 1. ], [1.77, 2.77]]) On this page...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.polynomial_kernel.html
    Mon Dec 22 11:58:29 GMT 2025
      108.5K bytes
      Cache
     
  9. PredefinedSplit — scikit-learn 1.8.0 docu...

    1 , 1 ]) >>> test_fold = [ 0 , 1 , - 1 , 1 ] >>>...PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for i , (...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.PredefinedSplit.html
    Mon Dec 22 11:58:31 GMT 2025
      116.5K bytes
      Cache
     
  10. paired_manhattan_distances — scikit-learn...

    array ([[ 1 , 1 , 0 ], [ 0 , 1 , 0 ], [ 0 , 0 , 1 ]]) >>>...calculated between (X[0], Y[0]), (X[1], Y[1]), …, (X[n_samples], Y[n_samples])....
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.paired_manhattan_distances.html
    Mon Dec 22 11:58:29 GMT 2025
      108.2K bytes
      Cache
     
Back to Top