- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 61 - 70 of 2,866 for 1 (0.07 sec)
-
RepeatedStratifiedKFold — scikit-learn 1.7.2 do...
array ([[ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ]])...>>> y = np . array ([ 0 , 0 , 1 , 1 ]) >>> rskf = RepeatedStratifiedKF...scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html -
ElasticNetCV — scikit-learn 1.7.2 documentation
l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1 , the penalty...(i.e. Ridge), as in [.1, .5, .7, .9, .95, .99, 1] . eps float, default=1e-3...scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html -
GroupShuffleSplit — scikit-learn 1.7.2 document...
index=[0 1], group=[1 1] Fold 1: Train: index=[0 1 5 6 7], group=[1...shape = ( 8 , 1 )) >>> groups = np . array ([ 1 , 1 , 2 , 2 , 2...scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupShuffleSplit.html -
FeatureHasher — scikit-learn 1.7.2 documentation
-1., 0., -1., 0., 1.], [ 0., 0., 0., -1., 0., -1., 0., 0.],...0.], [ 0., -1., 0., 0., 0., 0., 0., 1.]]) fit ( X = None , y...scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html -
NMF — scikit-learn 1.7.2 documentation
array ([[ 1 , 1 ], [ 2 , 1 ], [ 3 , 1.2 ], [ 4 , 1 ], [ 5 , 0.8...n\_samples * ||vec(H)||_1\\ &+ 0.5 * alpha\_W * (1 - l1\_ratio) * n\_features...scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html -
Lasso — scikit-learn 1.7.2 documentation
1 ) >>> clf . fit ([[ 0 , 0 ], [ 1 , 1 ], [ 2 , 2...* || W || _11 where \(||W||_{1,1}\) is the sum of the magnitude...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html -
LinearRegression — scikit-learn 1.7.2 documenta...
([[ 1 , 1 ], [ 1 , 2 ], [ 2 , 2 ], [ 2 , 3 ]]) >>> # y = 1 * x_0...means 1 unless in a joblib.parallel_backend context. -1 means...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html -
StandardScaler — scikit-learn 1.7.2 documentation
( data )) [[-1. -1.] [-1. -1.] [ 1. 1.] [ 1. 1.]] >>> print (...0 , 0 ], [ 0 , 0 ], [ 1 , 1 ], [ 1 , 1 ]] >>> scaler = StandardScaler...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html -
AgglomerativeClustering — scikit-learn 1.7.2 do...
array ([[ 1 , 2 ], [ 1 , 4 ], [ 1 , 0 ], ... [ 4 , 2...clustering . labels_ array([1, 1, 1, 0, 0, 0]) For a comparison...scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html -
ColumnTransformer — scikit-learn 1.7.2 document...
1. , 2. , 2. ], ... [ 1. , 1. , 0. , 1. ]]) >>> #...scikit-learn 1.1 Release Highlights for scikit-learn 1.1 Release Highlights...scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html