Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 701 - 710 of 3,230 for 1 (0.09 sec)

  1. clear_data_home — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version clear_data_home # sklearn.datasets. clear_data_home (...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.clear_data_home.html
    Sat Aug 02 00:15:36 UTC 2025
      105.1K bytes
      Cache
     
  2. sklearn.discriminant_analysis — scikit-learn 1....

    Linear and quadratic discriminant analysis. User guide. See the Linear and Quadratic Discriminant Analysis section for further details.
    scikit-learn.org/stable/api/sklearn.discriminant_analysis.html
    Sat Aug 02 00:15:36 UTC 2025
      114.8K bytes
      Cache
     
  3. make_spd_matrix — scikit-learn 1.7.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version make_spd_matrix # sklearn.datasets. make_spd_matrix (...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_spd_matrix.html
    Sat Aug 02 00:15:38 UTC 2025
      106.6K bytes
      Cache
     
  4. sklearn.linear_model — scikit-learn 1.7.1 docum...

    A variety of linear models. User guide. See the Linear Models section for further details. The following subsections are only rough guidelines: the same estimator can fall into multiple categories,...
    scikit-learn.org/stable/api/sklearn.linear_model.html
    Sat Aug 02 00:15:38 UTC 2025
      135.4K bytes
      Cache
     
  5. sklearn.semi_supervised — scikit-learn 1.7.1 do...

    Semi-supervised learning algorithms. These algorithms utilize small amounts of labeled data and large amounts of unlabeled data for classification tasks. User guide. See the Semi-supervised learnin...
    scikit-learn.org/stable/api/sklearn.semi_supervised.html
    Sat Aug 02 00:15:38 UTC 2025
      115.3K bytes
      Cache
     
  6. Non-negative least squares — scikit-learn 1.7.1...

    In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. Generate some random data Spli...
    scikit-learn.org/stable/auto_examples/linear_model/plot_nnls.html
    Sat Aug 02 00:15:34 UTC 2025
      93.4K bytes
      Cache
     
  7. Plotting Cross-Validated Predictions — scikit-l...

    ax = axs [ 1 ], random_state = 0 , ) axs [ 1 ] . set_title...scikit-learn 1.2 Release Highlights for scikit-learn 1.2 Gallery...
    scikit-learn.org/stable/auto_examples/model_selection/plot_cv_predict.html
    Sat Aug 02 00:15:37 UTC 2025
      92.5K bytes
      Cache
     
  8. spectral_embedding — scikit-learn 1.7.1 documen...

    Added in version 1.2: Added ‘auto’ option. norm_laplacian...
    scikit-learn.org/stable/modules/generated/sklearn.manifold.spectral_embedding.html
    Sat Aug 02 00:15:38 UTC 2025
      114.5K bytes
      Cache
     
  9. Feature Selection — scikit-learn 1.7.1 document...

    Examples concerning the sklearn.feature_selection module. Comparison of F-test and mutual information Model-based and sequential feature selection Pipeline ANOVA SVM Recursive feature elimination R...
    scikit-learn.org/stable/auto_examples/feature_selection/index.html
    Sat Aug 02 00:15:35 UTC 2025
      76.6K bytes
      Cache
     
  10. Decision Trees — scikit-learn 1.7.1 documentation

    Examples concerning the sklearn.tree module. Decision Tree Regression Plot the decision surface of decision trees trained on the iris dataset Post pruning decision trees with cost complexity prunin...
    scikit-learn.org/stable/auto_examples/tree/index.html
    Sat Aug 02 00:15:35 UTC 2025
      75.4K bytes
      Cache
     
Back to top