- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 651 - 660 of 2,911 for 1 (0.13 sec)
-
MetadataRequest — scikit-learn 1.7.0 documentation
Added in version 1.3. Parameters : owner str The...given method. Added in version 1.4. Parameters : method str The...scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html -
Nearest Centroid Classification — scikit-learn ...
1 ], c = y , cmap = cmap_bold ,...scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html -
Various Agglomerative Clustering on a 2D embedd...
1 , 0.95 ]) # ---------- # 2D embedding...time of the script: (0 minutes 1.402 seconds) Download Jupyter...scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html -
GenericUnivariateSelect — scikit-learn 1.7.0 do...
Added in version 1.0. See also f_classif ANOVA F-value..."x1", ..., "x(n_features_in_ - 1)"] . If input_features is an array-like,...scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html -
Illustration of prior and posterior Gaussian pr...
"Observations" ) axs [ 1 ] . legend ( bbox_to_anchor = ( 1.05 , 1.5 ), loc..."Observations" ) axs [ 1 ] . legend ( bbox_to_anchor = ( 1.05 , 1.5 ), loc...scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html -
Demo of OPTICS clustering algorithm — scikit-le...
subplot ( G [ 1 , 0 ]) ax3 = plt . subplot ( G [ 1 , 1 ]) ax4 = plt...labels_ == - 1 , 0 ], X [ clust . labels_ == - 1 , 1 ], "k+" , alpha...scikit-learn.org/stable/auto_examples/cluster/plot_optics.html -
Tweedie regression on insurance claims — scikit...
tweedie_powers = [ 1.5 , 1.7 , 1.8 , 1.9 , 1.99 , 1.999 , 1.9999 ] scores_product_model...dev p=1.9990 1.914574e+03 1.914370e+03 1.914537e+03 1.914388e+03...scikit-learn.org/stable/auto_examples/linear_model/plot_tweedie_regression_insurance_claims.html -
MethodMapping — scikit-learn 1.7.0 documentation
scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MethodMapping.html -
MinCovDet — scikit-learn 1.7.0 documentation
algorithm: (n_samples + n_features + 1) / 2 * n_samples . The parameter...parameter must be in the range (0, 1]. random_state int, RandomState...scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html -
2. Unsupervised learning — scikit-learn 1.7.0 d...
1. Gaussian mixture models 2.1.1. Gaussian Mixture 2.1.2....Mixture 2.2. Manifold learning 2.2.1. Introduction 2.2.2. Isomap 2.2.3....scikit-learn.org/stable/unsupervised_learning.html