- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 561 - 570 of 3,757 for 1 (0.15 sec)
-
Prediction Intervals for Gradient Boosting Regr...
common_params ) all_models [ "q %1.2f " % alpha ] = gbr . fit ( X_train...0.5 , 0.95 ]: metrics [ "pbl= %1.2f " % alpha ] = mean_pinball_loss...scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html -
mean_gamma_deviance — scikit-learn 1.7.2 docume...
1 , 4 ] >>> y_pred = [ 0.5 , 0.5...mean_gamma_deviance ( y_true , y_pred ) 1.0568... On this page This Page...scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_gamma_deviance.html -
Confusion matrix — scikit-learn 1.7.2 documenta...
confusion matrix [[1. 0. 0. ] [0. 0.62 0.38] [0. 0. 1. ]] # Authors:...scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html -
mutual_info_regression — scikit-learn 1.7.2 doc...
means 1 unless in a joblib.parallel_backend context. -1 means...References [ 1 ] Mutual Information on Wikipedia. [ 2 ] ( 1 , 2 ) A....scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html -
mutual_info_classif — scikit-learn 1.7.2 docume...
means 1 unless in a joblib.parallel_backend context. -1 means...References [ 1 ] Mutual Information on Wikipedia. [ 2 ] ( 1 , 2 ) A....scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html -
API Reference — scikit-learn 1.7.2 documentation
Scale each feature to the [-1, 1] range without breaking the...make_friedman1 Generate the “Friedman #1” regression problem. sklearn.datasets...scikit-learn.org/stable/api/index.html -
sparse_encode — scikit-learn 1.7.2 documentation
1 , 0 ], ... [ - 1 , - 1 , 2 ], ... [ 1 , 1 , 1 ], ......>>> X = np . array ([[ - 1 , - 1 , - 1 ], [ 0 , 0 , 3 ]]) >>> dictionary...scikit-learn.org/stable/modules/generated/sklearn.decomposition.sparse_encode.html -
Decision Tree Regression — scikit-learn 1.7.2 d...
scatter ( y_1 [:, 0 ], y_1 [:, 1 ], c = "cornflowerblue"...RandomState ( 1 ) X = np . sort ( 5 * rng . rand ( 80 , 1 ), axis =...scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html -
median_absolute_error — scikit-learn 1.7.2 docu...
1 ], [ - 1 , 1 ], [ 7 , - 6 ]] >>> y_pred...y_pred = [[ 0 , 2 ], [ - 1 , 2 ], [ 8 , - 5 ]] >>> median_absolute_error...scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html -
polynomial_kernel — scikit-learn 1.7.2 document...
[ 1 , 1 , 1 ]] >>> Y = [[ 1 , 0 , 0 ], [ 1 , 1 , 0 ]] >>>..., degree = 2 ) array([[1. , 1. ], [1.77, 2.77]]) On this page...scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.polynomial_kernel.html