Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 441 - 450 of 2,952 for 1 (0.51 sec)

  1. sklearn.ensemble — scikit-learn 1.6.1 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Sat Apr 19 00:31:22 UTC 2025
      121.5K bytes
      Cache
     
  2. sklearn.multioutput — scikit-learn 1.6.1 docume...

    Multioutput regression and classification. The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their constructor. The meta-estimator extends ...
    scikit-learn.org/stable/api/sklearn.multioutput.html
    Sat Apr 19 00:31:22 UTC 2025
      116.7K bytes
      Cache
     
  3. sklearn.covariance — scikit-learn 1.6.1 documen...

    Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. C...
    scikit-learn.org/stable/api/sklearn.covariance.html
    Sat Apr 19 00:31:21 UTC 2025
      120K bytes
      Cache
     
  4. sklearn.inspection — scikit-learn 1.6.1 documen...

    Tools for model inspection. User guide. See the Inspection section for further details. Plotting:
    scikit-learn.org/stable/api/sklearn.inspection.html
    Sat Apr 19 00:31:21 UTC 2025
      116.3K bytes
      Cache
     
  5. Generalized Linear Models — scikit-learn 1.6.1 ...

    Examples concerning the sklearn.linear_model module. Comparing Linear Bayesian Regressors Comparing various online solvers Curve Fitting with Bayesian Ridge Regression Decision Boundaries of Multin...
    scikit-learn.org/stable/auto_examples/linear_model/index.html
    Sat Apr 19 00:31:22 UTC 2025
      94.9K bytes
      Cache
     
  6. sklearn.manifold — scikit-learn 1.6.1 documenta...

    Data embedding techniques. User guide. See the Manifold learning section for further details.
    scikit-learn.org/stable/api/sklearn.manifold.html
    Sat Apr 19 00:31:22 UTC 2025
      117.5K bytes
      Cache
     
  7. all_estimators — scikit-learn 1.6.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version all_estimators # sklearn.utils.discovery. all_estimat...
    scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_estimators.html
    Sat Apr 19 00:31:21 UTC 2025
      109.5K bytes
      Cache
     
  8. load_linnerud — scikit-learn 1.6.1 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version load_linnerud # sklearn.datasets. load_linnerud ( * ,...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html
    Sat Apr 19 00:31:22 UTC 2025
      110.5K bytes
      Cache
     
  9. sklearn.pipeline — scikit-learn 1.6.1 documenta...

    Utilities to build a composite estimator as a chain of transforms and estimators. User guide. See the Pipelines and composite estimators section for further details.
    scikit-learn.org/stable/api/sklearn.pipeline.html
    Sat Apr 19 00:31:22 UTC 2025
      116.3K bytes
      Cache
     
  10. Effect of varying threshold for self-training —...

    mean ( axis = 1 ), yerr = scores . std ( axis = 1 ), capsize =...( axis = 1 ), yerr = amount_labeled . std ( axis = 1 ), capsize...
    scikit-learn.org/stable/auto_examples/semi_supervised/plot_self_training_varying_threshold.html
    Sat Apr 19 00:31:22 UTC 2025
      102.6K bytes
      Cache
     
Back to top