- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 401 - 410 of 2,023 for = (0.35 sec)
-
MNIST classification using multinomial logistic...
sparsity = np . mean ( clf . coef_ == 0 ) * 100 score = clf . score...return_X_y = True , as_frame = False ) random_state = check_random_state...scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html -
enet_path — scikit-learn 1.7.1 documentation
l1_ratio = 0.5 , eps = 0.001 , n_alphas = 100 , alphas = None ,...precompute = 'auto' , Xy = None , copy_X = True , coef_init = None...scikit-learn.org/stable/modules/generated/sklearn.linear_model.enet_path.html -
3.2. Tuning the hyper-parameters of an estimato...
6 * 2 = 12 35 // 2 = 17 12 * 2 = 24 17 // 2 = 8 24 * 2 = 48 8...3 (=min_resources) 70 (=n_candidates) 3 * 2 = 6 70 // 2 = 35...scikit-learn.org/stable/modules/grid_search.html -
HuberRegressor vs Ridge on dataset with strong ...
n_samples = 20 , n_features = 1 , random_state = 0 , noise = 4.0 ,...): huber = HuberRegressor ( alpha = 0.0 , epsilon = epsilon )...scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html -
spectral_embedding — scikit-learn 1.7.1 documen...
n_components = 8 , eigen_solver = None , random_state = None , eigen_tol...eigen_tol = 'auto' , norm_laplacian = True , drop_first = True )...scikit-learn.org/stable/modules/generated/sklearn.manifold.spectral_embedding.html -
StratifiedGroupKFold — scikit-learn 1.7.1 docum...
( n_splits = 5 , shuffle = False , random_state = None ) [source]...StratifiedGroupKFold(n_splits=3, random_state=None, shuffle=False) >>> for i...scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html -
Robust covariance estimation and Mahalanobis di...
7 ) n_samples = 125 n_outliers = 25 n_features = 2 # generate...gen_cov = np . eye ( n_features ) gen_cov [ 0 , 0 ] = 2.0 X = np ....scikit-learn.org/stable/auto_examples/covariance/plot_mahalanobis_distances.html -
check_array — scikit-learn 1.7.1 documentation
accept_sparse = False , * , accept_large_sparse = True , dtype = 'numeric'...'numeric' , order = None , copy = False , force_writeable = False , force_all_finite...scikit-learn.org/stable/modules/generated/sklearn.utils.check_array.html -
The Johnson-Lindenstrauss bound for embedding w...
samples pairs nonzero = dists != 0 dists = dists [ nonzero ] for...: t0 = time () rp = SparseRandomProjecti ( n_components = n_components...scikit-learn.org/stable/auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.html -
spectral_clustering — scikit-learn 1.7.1 docume...
n_clusters = 8 , n_components = None , eigen_solver = None , random_state...random_state = None , n_init = 10 , eigen_tol = 'auto' , assign_labels...scikit-learn.org/stable/modules/generated/sklearn.cluster.spectral_clustering.html