Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 361 - 370 of 1,994 for = (0.09 sec)

  1. feed.xml

    ron=gobig&hulk=regpage&blade=elasticweb&gambit=mp-b AWS Marketplace...ron=gobig&hulk=regpage&blade=elasticweb&gambit=mp-b AWS Marketplace...
    www.elastic.co/observability-labs/rss/feed.xml
    Fri Apr 18 01:12:42 UTC 2025
      2.2M bytes
      5 views
     
  2. GaussianProcessClassifier — scikit-learn 1.6.1 ...

    n_restarts_optimizer = 0 , max_iter_predict = 100 , warm_start = False , copy_X_train...copy_X_train = True , random_state = None , multi_class = 'one_vs_rest'...
    scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
    Sat Apr 19 00:31:22 UTC 2025
      148.1K bytes
      Cache
     
  3. QuantileRegressor — scikit-learn 1.6.1 document...

    quantile = 0.5 , alpha = 1.0 , fit_intercept = True , solver = 'highs'...n_samples , n_features = 10 , 2 >>> rng = np . random . RandomState...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.QuantileRegressor.html
    Sat Apr 19 00:31:22 UTC 2025
      139.6K bytes
      Cache
     
  4. Probabilistic predictions with Gaussian process...

    train_size = 50 rng = np . random . RandomState ( 0 ) X = rng . uniform...train_size ], c = "k" , label = "Train data" , edgecolors = ( 0 , 0 ,...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc.html
    Sat Apr 19 00:31:22 UTC 2025
      110.7K bytes
      Cache
     
  5. Matern — scikit-learn 1.6.1 documentation

    length_scale = 1.0 , length_scale_bounds = (1e-05, 100000.0) , nu = 1.5...>>> X , y = load_iris ( return_X_y = True ) >>> kernel = 1.0 * Matern...
    scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html
    Sat Apr 19 00:31:21 UTC 2025
      127.3K bytes
      Cache
     
  6. Principal Component Analysis (PCA) on Iris Data...

    projection = "3d" , elev =- 150 , azim = 110 ) X_reduced = PCA ( n_components...PCA fig = plt . figure ( 1 , figsize = ( 8 , 6 )) ax = fig . add_subplot...
    scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html
    Sat Apr 19 00:31:22 UTC 2025
      93.3K bytes
      Cache
     
  7. Detection error tradeoff (DET) curve — scikit-l...

    n_features = 2 , n_redundant = 0 , n_informative = 2 , random_state...max_depth = 5 , n_estimators = 10 , max_features = 1 ), } Plot...
    scikit-learn.org/stable/auto_examples/model_selection/plot_det.html
    Sat Apr 19 00:31:22 UTC 2025
      96.3K bytes
      Cache
     
  8. set_config — scikit-learn 1.6.1 documentation

    assume_finite = None , working_memory = None , print_changed_only = None...None , display = None , pairwise_dist_chunk_size = None , enabl...
    scikit-learn.org/stable/modules/generated/sklearn.set_config.html
    Sat Apr 19 00:31:22 UTC 2025
      120.3K bytes
      Cache
     
  9. plot_hgbt_regression.zip

    py """ ========== Features in Histogram Gradient...Gradient Boosting Trees ========== :ref:`histogram_based_gradient_boosting`...
    scikit-learn.org/stable/_downloads/ef504a3cb245a55fde178198c8218b4a/plot_hgbt_regression.zip
    Wed Apr 09 14:13:00 UTC 2025
      36.8K bytes
     
  10. FeatureUnion — scikit-learn 1.6.1 documentation

    n_jobs = None , transformer_weights = None , verbose = False ,...union = FeatureUnion ([( "pca" , PCA ( n_components = 1 )), ......
    scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html
    Sat Apr 19 00:31:22 UTC 2025
      136.7K bytes
      Cache
     
Back to top