Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 3681 - 3690 of 5,591 for * (0.5 sec)

  1. Decision Boundaries of Multinomial and One-vs-R...

    [[ 0.4 , 0.2 ], [ - 0.4 , 1.2 ]] X = np . dot ( X , transformation...classes, centered around [-5, 0], [0, 1.5], and [5, -1]. After...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html
    Mon Sep 22 13:26:33 UTC 2025
      110.7K bytes
      Cache
     
  2. Gaussian process classification (GPC) on iris d...

    X [:, 0 ] . min () - 1 , X [:, 0 ] . max () + 1 y_min , y_max...= X [:, 1 ] . min () - 1 , X [:, 1 ] . max () + 1 xx , yy = np...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html
    Mon Sep 22 13:26:33 UTC 2025
      98.4K bytes
      Cache
     
  3. Multilabel classification scikit-learn 1.7.2 ...

    zero_class = ( Y [:, 0 ]) . nonzero () one_class = ( Y [:, 1 ]) . nonzero...nonzero () plt . scatter ( X [:, 0 ], X [:, 1 ], s = 40 , c = "gray"...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_multilabel.html
    Mon Sep 22 13:26:34 UTC 2025
      106K bytes
      Cache
     
  4. Permutation Importance with Multicollinear or C...

    `labels=...` # (matplotlib < 3.9) or `tick_labels=...` (matplotlib...axvline ( x = 0 , color = "k" , linestyle = "--" ) return ax We then...
    scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html
    Mon Sep 22 13:26:35 UTC 2025
      117.4K bytes
      Cache
     
  5. Explicit feature map approximation for RBF kern...

    feature_map_nystroem ), ( "svm" , svm . LinearSVC ( random_state = 42 )), ] )...( "svm" , svm . LinearSVC ( random_state = 42 )), ] ) nystroem_approx_svm...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_kernel_approximation.html
    Mon Sep 22 13:26:35 UTC 2025
      124.4K bytes
      Cache
     
  6. Failure of Machine Learning to infer causal eff...

    pd . Series ( { "college degree" : 2.0 , "ability" : 5.0 , "experience"..."experience" : 0.2 , "parent hourly wage" : 1.0 , } ) hourly_wages...
    scikit-learn.org/stable/auto_examples/inspection/plot_causal_interpretation.html
    Mon Sep 22 13:26:34 UTC 2025
      109.8K bytes
      Cache
     
  7. Effect of model regularization on training and ...

    enet . coef_ ], [ "True" , "Model" ]): ax . stem ( coef ) ax . set...idx_avg_max_test_score ], color = "k" , linewidth = 2 , linestyle = "--" , label...
    scikit-learn.org/stable/auto_examples/model_selection/plot_train_error_vs_test_error.html
    Mon Sep 22 13:26:34 UTC 2025
      102.8K bytes
      1 views
      Cache
     
  8. Novelty detection with Local Outlier Factor (LO...

    linspace ( Z . min (), 0 , 7 ), cmap = plt . cm . PuBu ) a = plt ...."gold" , s = s , edgecolors = "k" ) plt . axis ( "tight" ) plt...
    scikit-learn.org/stable/auto_examples/neighbors/plot_lof_novelty_detection.html
    Mon Sep 22 13:26:33 UTC 2025
      103.2K bytes
      1 views
      Cache
     
  9. Plot Ridge coefficients as a function of the re...

    arange ( 1 , 11 ) + np . arange ( 0 , 10 )[:, np . newaxis ]) y =...set_xscale ( "log" ) ax . set_xlim ( ax . get_xlim ()[:: - 1 ]) # reverse...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_path.html
    Mon Sep 22 13:26:34 UTC 2025
      91.7K bytes
      Cache
     
  10. Visualizing cross-validation behavior in scikit...

    rng . randn ( 100 , 10 ) percentiles_classes = [ 0.1 , 0.3 , 0.6...groups )), [ 0.5 ] * len ( groups ), c = groups , marker = "_" , lw...
    scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
    Mon Sep 22 13:26:34 UTC 2025
      119.9K bytes
      Cache
     
Back to top