Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 311 - 320 of 1,994 for = (0.25 sec)

  1. Underfitting vs. Overfitting — scikit-learn 1.6...

    0 ) n_samples = 30 degrees = [ 1 , 4 , 15 ] X = np . sort ( np...ax , xticks = (), yticks = ()) polynomial_features = PolynomialFeatures...
    scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
    Sat Apr 19 00:31:22 UTC 2025
      98.7K bytes
      Cache
     
  2. Demo of affinity propagation clustering algorit...

    ): class_members = labels == k cluster_center = X [ cluster_centers_indices...labels_true = make_blobs ( n_samples = 300 , centers = centers ,...
    scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html
    Sat Apr 19 00:31:21 UTC 2025
      97.5K bytes
      Cache
     
  3. AdditiveChi2Sampler — scikit-learn 1.6.1 docume...

    y = load_digits ( return_X_y = True ) >>> chi2sampler = AdditiveChi2Sampler...>>> clf = SGDClassifier ( max_iter = 5 , random_state = 0 , tol...
    scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html
    Sat Apr 19 00:31:22 UTC 2025
      129.4K bytes
      Cache
     
  4. plot_multi_metric_evaluation.ipynb

    \n alpha=0.1 if sample == \"test\" else 0,\n color=color,\n )\n... style,\n color=color,\n alpha=1 if sample == \"test\" else 0.7,\n...
    scikit-learn.org/stable/_downloads/f57e1ee55d4c7a51949d5c26b3af07bb/plot_multi_metric_evaluation....
    Thu Apr 17 23:17:16 UTC 2025
      4.9K bytes
      Similar Results (1)
     
  5. SVC — scikit-learn 1.6.1 documentation

    C = 1.0 , kernel = 'rbf' , degree = 3 , gamma = 'scale'...coef0 = 0.0 , shrinking = True , probability = False , tol = 0.001...
    scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
    Sat Apr 19 00:31:22 UTC 2025
      182K bytes
      Cache
     
  6. HistGradientBoostingRegressor — scikit-learn 1....

    n_iter_no_change = 10 , tol = 1e-07 , verbose = 0 , random_state = None )...learning_rate = 0.1 , max_iter = 100 , max_leaf_nodes = 31 , max_depth...
    scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
    Sat Apr 19 00:31:22 UTC 2025
      171.7K bytes
      Cache
     
  7. L1-based models for Sparse Signals — scikit-lea...

    linthresh = 10e-4 , vmin =- 1 , vmax = 1 ), cbar_kws = { "label"...import r2_score t0 = time () lasso = Lasso ( alpha = 0.14 ) . fit (...
    scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_and_elasticnet.html
    Sat Apr 19 00:31:20 UTC 2025
      125K bytes
      Cache
     
  8. Monotonic Constraints — scikit-learn 1.6.1 docu...

    X = np . c_ [ f_0 , f_1 ] noise = rng . normal ( loc = 0.0 ,...y , "o" , alpha = 0.3 , zorder =- 1 , color = "tab:green" ) disp...
    scikit-learn.org/stable/auto_examples/ensemble/plot_monotonic_constraints.html
    Sat Apr 19 00:31:22 UTC 2025
      124.2K bytes
      Cache
     
  9. SVM: Weighted samples — scikit-learn 1.6.1 docu...

    c = y , s = 100 * sample_weight , alpha = 0.9 , cmap = plt...( xx , yy , Z , alpha = 0.75 , cmap = plt . cm . bone ) axis...
    scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html
    Sat Apr 19 00:31:22 UTC 2025
      93.5K bytes
      Cache
     
  10. fetch_openml — scikit-learn 1.6.1 documentation

    n_retries : int = 3 , delay : float = 1.0 , parser : str = 'auto' ,...: str | None = None , * , version : str | int = 'active' , data_id...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_openml.html
    Sat Apr 19 00:31:21 UTC 2025
      152.5K bytes
      Cache
     
Back to top