Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 2871 - 2880 of 4,759 for * (7.75 sec)

  1. Poisson regression and non-normal loss scikit...

    . ... ... ... ... ... ... ... ... ... ... ... ... 678008 6114326.0..."Exposure" ] . sum () / df [ "Exposure" ] . sum () ) ) fig , ( ax0...
    scikit-learn.org/stable/auto_examples/linear_model/plot_poisson_regression_non_normal_loss.html
    Sat Aug 02 00:15:35 UTC 2025
      172.7K bytes
      Cache
     
  2. Neighborhood Components Analysis Illustration ...

    range ( X . shape [ 0 ]): ax . text ( X [ i , 0 ], X [ i , 1 ], str...str ( i ), va = "center" , ha = "center" ) ax . scatter ( X [...
    scikit-learn.org/stable/auto_examples/neighbors/plot_nca_illustration.html
    Sat Aug 02 00:15:37 UTC 2025
      100.4K bytes
      Cache
     
  3. Swiss Roll And Swiss-Hole Reduction scikit-le...

    text2D ( 0.8 , 0.05 , s = "n_samples=1500" , transform = ax . transAxes...text2D ( 0.8 , 0.05 , s = "n_samples=1500" , transform = ax . transAxes...
    scikit-learn.org/stable/auto_examples/manifold/plot_swissroll.html
    Sat Aug 02 00:15:37 UTC 2025
      100K bytes
      Cache
     
  4. Explicit feature map approximation for RBF kern...

    feature_map_nystroem ), ( "svm" , svm . LinearSVC ( random_state = 42 )), ] )...( "svm" , svm . LinearSVC ( random_state = 42 )), ] ) nystroem_approx_svm...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_kernel_approximation.html
    Sat Aug 02 00:15:37 UTC 2025
      124.4K bytes
      Cache
     
  5. Effect of transforming the targets in regressio...

    y_pred ) . items (): ax . plot ([], [], " " , label = f " { name }...= 100 , random_state = 0 ) y = np . expm1 (( y + abs ( y . min...
    scikit-learn.org/stable/auto_examples/compose/plot_transformed_target.html
    Sat Aug 02 00:15:35 UTC 2025
      125.3K bytes
      Cache
     
  6. Column Transformer with Heterogeneous Data Sour...

    = ( "footers" , "quotes" ), return_X_y = True , ) Each feature...text ), "num_sentences" : text . count ( "." )} for text in posts...
    scikit-learn.org/stable/auto_examples/compose/plot_column_transformer.html
    Sat Aug 02 00:15:37 UTC 2025
      107.7K bytes
      Cache
     
  7. Multilabel classification scikit-learn 1.7.1 ...

    zero_class = ( Y [:, 0 ]) . nonzero () one_class = ( Y [:, 1 ]) . nonzero...nonzero () plt . scatter ( X [:, 0 ], X [:, 1 ], s = 40 , c = "gray"...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_multilabel.html
    Sat Aug 02 00:15:37 UTC 2025
      106K bytes
      Cache
     
  8. Multi-dimensional scaling scikit-learn 1.7.1 ...

    1.0 , 1.0 ]) s = 100 plt . scatter ( X_true [:, 0 ], X_true...original data. X_nmds *= np . sqrt (( X_true ** 2 ) . sum ()) / np ....
    scikit-learn.org/stable/auto_examples/manifold/plot_mds.html
    Sat Aug 02 00:15:37 UTC 2025
      104.1K bytes
      Cache
     
  9. Novelty detection with Local Outlier Factor (LO...

    linspace ( Z . min (), 0 , 7 ), cmap = plt . cm . PuBu ) a = plt ...."gold" , s = s , edgecolors = "k" ) plt . axis ( "tight" ) plt...
    scikit-learn.org/stable/auto_examples/neighbors/plot_lof_novelty_detection.html
    Sat Aug 02 00:15:35 UTC 2025
      103.2K bytes
      1 views
      Cache
     
  10. Plot multi-class SGD on the iris dataset scik...

    xmin , xmax ], [ line ( xmin ), line ( xmax )], ls = "--" , color...alpha = 0.001 , max_iter = 100 ) . fit ( X , y ) ax = plt . gca ()...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html
    Sat Aug 02 00:15:37 UTC 2025
      94.9K bytes
      Cache
     
Back to top