- Sort Score
- Num 10 results
- Language All
- Labels All
Results 211 - 220 of over 10,000 for 1 (0.2 seconds)
-
make_gaussian_quantiles — scikit-learn 1....
dataset is from Zhu et al [1]. References [ 1 ] Zhu, H. Zou, S. Rosset,...es ( * , mean = None , cov = 1.0 , n_samples = 100 , n_features...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html -
GradientBoostingClassifier — scikit-learn...
1 , n_estimators = 100 , subsample = 1.0 , criterion...in the range [1, inf) . subsample float, default=1.0 The fraction...scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html -
ShuffleSplit — scikit-learn 1.7.2 documen...
array ([ 1 , 2 , 1 , 2 , 1 , 2 ]) >>> rs...Train: index=[1 3 0 4] Test: index=[5 2] Fold 1: Train: index=[4...scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html -
silhouette_score — scikit-learn 1.7.2 doc...
The best value is 1 and the worst value is -1. Values near 0 indicate...<= n_labels <= n_samples - 1 . This function returns the mean...scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html -
SelfTrainingClassifier — scikit-learn 1.7...
since version 1.6: base_estimator was deprecated in 1.6 and will...estimator_ attribute. Added in version 1.6: estimator was added to replace...scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.SelfTrainingClassifier.html -
MultinomialNB — scikit-learn 1.7.2 docume...
Added in version 1.2. Changed in version 1.4: The default value... MultinomialNB ( * , alpha = 1.0 , force_alpha = True , fit_prior...scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html -
CalibratedClassifierCV — scikit-learn 1.7...
means 1 unless in a joblib.parallel_backend context. -1 means...LinearSVC . Added in version 1.2. method {‘sigmoid’, ‘isotonic’},...scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html -
SparseCoder — scikit-learn 1.7.2 document...
1 , 0 ], ... [ - 1 , - 1 , 2 ], ... [ 1 , 1 , 1 ], ......>>> X = np . array ([[ - 1 , - 1 , - 1 ], [ 0 , 0 , 3 ]]) >>>...scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparseCoder.html -
VotingClassifier — scikit-learn 1.7.2 doc...
([[ - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2...2 , 1 ], [ 3 , 2 ]]) >>> y = np . array ([ 1 , 1 , 1...scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html -
FeatureUnion — scikit-learn 1.7.2 documen...
svd__n_components = 1 ) . fit_transform ( X ) array([[-1.5 , 3.04], [ 1.5 , 5.72]])...unchanged. Added in version 1.1: Added the option "passthrough"...scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html