Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 181 - 190 of 408 for f (0.08 sec)

  1. Precision-Recall — scikit-learn 1.5.2 documenta...

    positives ( \(F_p\) ). \[P = \frac{T_p}{T_p+F_p}\] Recall ( \(R\)...negatives ( \(F_n\) ). \[R = \frac{T_p}{T_p + F_n}\] The precision-recall...
    scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
    Thu Oct 31 11:00:34 UTC 2024
      135.4K bytes
      Cache
     
  2. LeavePGroupsOut — scikit-learn 1.5.2 documentation

    print ( f "Fold { i } :" ) ... print ( f " Train: index=...train_index ] } " ) ... print ( f " Test: index= { test_index }...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html
    Thu Oct 31 11:00:32 UTC 2024
      121.8K bytes
      Cache
     
  3. Combine predictors using stacking — scikit-lear...

    { key : ( f " { np . abs ( np . mean ( scores [ f 'test_ { value...])) : .2f } +- " f " { np . std ( scores [ f 'test_ { value }...
    scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html
    Thu Oct 31 11:00:34 UTC 2024
      235.3K bytes
      Cache
     
  4. Feature agglomeration vs. univariate selection ...

    BayesianRidge f_regression = mem . cache ( feature_selection . f_regression...univariate_selection.f_regression... f_regression(array([[-0.451933,...
    scikit-learn.org/stable/auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection....
    Thu Oct 31 11:00:32 UTC 2024
      107.9K bytes
      Cache
     
  5. Illustration of prior and posterior Gaussian pr...

    label = f "Sampled function # { idx + 1...plt . tight_layout () print ( f "Kernel parameters before fit:...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
    Thu Oct 31 11:00:32 UTC 2024
      131.2K bytes
      Cache
     
  6. Hierarchical clustering: structured vs unstruct...

    print ( f "Elapsed time: { elapsed_time : .2f } s" ) print ( f "Number...print ( f "Elapsed time: { elapsed_time : .2f } s" ) print ( f "Number...
    scikit-learn.org/stable/auto_examples/cluster/plot_ward_structured_vs_unstructured.html
    Thu Oct 31 11:00:34 UTC 2024
      97.5K bytes
      Cache
     
  7. Gaussian Processes regression: basic introducto...

    generative process is defined as \(f(x) = x \sin(x)\) . import numpy.... plot ( X , y , label = r "$f(x) = x \sin(x)$" , linestyle =...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
    Thu Oct 31 11:00:34 UTC 2024
      103.7K bytes
      Cache
     
  8. SelectFdr — scikit-learn 1.5.2 documentation

    See also f_classif ANOVA F-value between label/feature...for classification tasks. f_regression F-value between label/feature...
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFdr.html
    Thu Oct 31 11:00:34 UTC 2024
      131.9K bytes
      Cache
     
  9. SelectFwe — scikit-learn 1.5.2 documentation

    See also f_classif ANOVA F-value between label/feature...for classification tasks. f_regression F-value between label/feature...
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFwe.html
    Thu Oct 31 11:00:34 UTC 2024
      130.8K bytes
      Cache
     
  10. L1 Penalty and Sparsity in Logistic Regression ...

    * 100 print ( f "C= { C : .2f } " ) print ( f " { 'Sparsity with...sparsity_l1_LR : .2f } %" ) print ( f " { 'Sparsity with Elastic-Net...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html
    Thu Oct 31 11:00:32 UTC 2024
      95K bytes
      Cache
     
Back to top