- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1 - 10 of 127 for pipe (0.15 sec)
-
Announcing Elastic’s piped query language, ES|Q...
From pipe dreams to reality: Announcing Elastic’s piped query...technical preview of Elastic®’s new piped query language, ES|QL (Elasticsearch...www.elastic.co/blog/esql-elasticsearch-piped-query-language -
Release Highlights for scikit-learn 1.0 — sciki...
LogisticRegression ()) pipe . fit ( X , y ) pipe [: - 1 ] . get_feature_names_out...the latest version (with pip): pip install -- upgrade scikit...scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_0_0.html -
TfidfTransformer — scikit-learn 1.7.0 documenta...
'one' ] >>> pipe = Pipeline ([( 'count' , CountVectorizer...TfidfTransformer ())]) . fit ( corpus ) >>> pipe [ 'count' ] . transform ( corpus...scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html -
Release Highlights for scikit-learn 0.24 — scik...
the latest version (with pip): pip install -- upgrade scikit...fetch_covtype ( return_X_y = True ) pipe = make_pipeline ( MinMaxScaler...scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_24_0.html -
Pipeline — scikit-learn 1.7.0 documentation
random_state = 0 ) >>> pipe = Pipeline ([( 'scaler' , StandardScaler...test set into the train set >>> pipe . fit ( X_train , y_train )...scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html -
minmax_scale — scikit-learn 1.7.0 documentation
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html -
How to deploy NLP: Text embeddings and vector s...
as in a pipe, rather than by diffusion through...travels by bulk flow, as in a pipe, rather than by diffusion through...www.elastic.co/search-labs/blog/how-to-deploy-nlp-text-embeddings-and-vector-search -
getting_started.rst.txt
create a pipeline object >>> pipe = make_pipeline( ... StandardScaler(),...# fit the whole pipeline >>> pipe.fit(X_train, y_train) Pipel...scikit-learn.org/stable/_sources/getting_started.rst.txt -
7.3. Preprocessing data — scikit-learn 1.7.0 do...
random_state = 42 ) >>> pipe = make_pipeline ( StandardScaler...(), LogisticRegression ()) >>> pipe . fit ( X_train , y_train )...scikit-learn.org/stable/modules/preprocessing.html -
grid_search.rst.txt
tion import SelectKBest >>> pipe = Pipeline([ ... ('select',...8]} >>> search = GridSearchCV(pipe, param_grid, cv=5).fit(X, y)...scikit-learn.org/stable/_sources/modules/grid_search.rst.txt