- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 131 - 140 of 3,499 for 1 (0.06 sec)
-
OrdinalEncoder — scikit-learn 1.6.0 documentation
inverse_transform ([[ 1 , 0 ], [ 0 , 1 ]]) array([['Male', 1], ['Female',... =- 1 ) . fit_transform ( X ) array([[ 1., 0.], [ 0., 1.], [...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html -
NearestCentroid — scikit-learn 1.7.dev0 documen...
([[ - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2...2 , 1 ], [ 3 , 2 ]]) >>> y = np . array ([ 1 , 1 , 1 , 2 , 2...scikit-learn.org/dev/modules/generated/sklearn.neighbors.NearestCentroid.html -
StratifiedShuffleSplit — scikit-learn 1.6.0 doc...
array ([[ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [...np . array ([ 0 , 0 , 0 , 1 , 1 , 1 ]) >>> sss = StratifiedShuffleSpl...scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html -
ExtraTreesClassifier — scikit-learn 1.7.dev0 do...
[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead...instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The “balanced” mode uses...scikit-learn.org/dev/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html -
RFECV — scikit-learn 1.7.dev0 documentation
ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) property...estimator , * , step = 1 , min_features_to_select = 1 , cv = None , scoring...scikit-learn.org/dev/modules/generated/sklearn.feature_selection.RFECV.html -
LatentDirichletAllocation — scikit-learn 1.7.de...
evaluate_every = -1 , total_samples = 1000000.0 , perp_tol = 0.1 , mean_change_tol...None, defaults to 1 / n_components . In [1] , this is called...scikit-learn.org/dev/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html -
GaussianNB — scikit-learn 1.6.0 documentation
([[ - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2...2 , 1 ], [ 3 , 2 ]]) >>> Y = np . array ([ 1 , 1 , 1 , 2 , 2...scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html -
plot_release_highlights_1_6_0.zip
1, 6, np.nan]).reshape(-1, 1) y = [0, 0, 1, 1] forest...np.array([0, 1, 6, np.nan]).reshape(-1, 1)\ny = [0, 0, 1, 1]\n\nforest...scikit-learn.org/stable/_downloads/151e78f803ff9f3154dd7dbbaf45e0b0/plot_release_highlights_1_6_0... -
RepeatedStratifiedKFold — scikit-learn 1.6.0 do...
array ([[ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ]])...>>> y = np . array ([ 0 , 0 , 1 , 1 ]) >>> rskf = RepeatedStratifiedKF...scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html -
make_circles — scikit-learn 1.6.0 documentation
int64(1), np.int64(1), np.int64(1), np.int64(0), np.int64(0)]...outer circle in the range [0, 1) . Returns : X ndarray of shape...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html