- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1341 - 1350 of over 10,000 for 2 (0.2 seconds)
-
AdaBoostRegressor — scikit-learn 1.8.0 do...
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...algorithm known as AdaBoost.R2 [2]. Read more in the User Guide...scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html -
FeatureUnion — scikit-learn 1.8.0 documen...
n_components = 2 ))]) >>> X = [[ 0. , 1. , 3 ], [ 2. , 2. , 5...parameters. Added in version 1.2. n_features_in_ int Number of...scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html -
ClassicalMDS — scikit-learn 1.8.0 documen...
ClassicalMDS ( n_components = 2 , * , metric = 'euclidean' , metric_params...Parameters : n_components int, default=2 Number of embedding dimensions....scikit-learn.org/stable/modules/generated/sklearn.manifold.ClassicalMDS.html -
scale — scikit-learn 1.8.0 documentation
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html -
Instalación con Docker (Detalles)
posterior instalado Docker Compose 2.0 o posterior instalado Verificación...pose-opensearch3.yaml Método 2: Clonar el Repositorio con Git...fess.codelibs.org/es/15.4/install/install-docker.html -
recall_score — scikit-learn 1.8.0 documen...
scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html -
safe_sparse_dot — scikit-learn 1.8.0 docu...
scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.safe_sparse_dot.html -
1.12. Multiclass and multioutput algorithms ...
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...scikit-learn.org/stable/modules/multiclass.html -
EllipticEnvelope — scikit-learn 1.8.0 doc...
(n_samples + n_features + 1) / 2 * n_samples . Range is (0, 1)....n_samples > n_features ** 2 . References [ 1 ] Rousseeuw,...scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html -
k_means — scikit-learn 1.8.0 documentation
2 ], [ 1 , 4 ], [ 1 , 0 ], ... [ 10 , 2 ], [ 10 , 4...>>> centroid array([[10., 2.], [ 1., 2.]]) >>> label array([1,...scikit-learn.org/stable/modules/generated/sklearn.cluster.k_means.html