- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1181 - 1190 of over 10,000 for 1 (0.52 seconds)
-
ParameterGrid — scikit-learn 1.7.2 docume...
'a' : 1 , 'b' : True }, { 'a' : 1 , 'b'...param_grid = { 'a' : [ 1 , 2 ], 'b' : [ True ,...scikit-learn.org/stable/modules/generated/sklearn.model_selection.ParameterGrid.html -
balanced_accuracy_score — scikit-learn 1....
1 , 0 , 0 , 1 , 0 ] >>> y_pred = [ 0 , 1 , 0 ,...each class. The best value is 1 and the worst value is 0 when...scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html -
9.2. Computational Performance — scikit-l...
1.1. Bulk versus Atomic mode # In...data as more complex ones. 9.2.1. Prediction Latency # One of the...scikit-learn.org/stable/computing/computational_performance.html -
dcg_score — scikit-learn 1.7.2 documentation
asarray ([[ 1 , 0 , 0 , 0 , 1 ]]) >>> # by...to have a score between 0 and 1. References Wikipedia entry for...scikit-learn.org/stable/modules/generated/sklearn.metrics.dcg_score.html -
cohen_kappa_score — scikit-learn 1.7.2 do...
which is a number between -1 and 1. The maximum value means complete...function computes Cohen’s kappa [1] , a score that expresses the...scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html -
power_transform — scikit-learn 1.7.2 docu...
'box-cox' )) [[-1.332 -0.707] [ 0.256 -0.707] [ 1.076 1.414]] Warning...Available methods are: ‘yeo-johnson’ [1] , works with positive and negative...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.power_transform.html -
load_digits — scikit-learn 1.7.2 document...
scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html -
OneToOneFeatureMixin — scikit-learn 1.7.2...
This mixin assumes there’s a 1-to-1 correspondence between input...shape [ 1 ] ... return self >>> X = np . array ([[ 1 , 2...scikit-learn.org/stable/modules/generated/sklearn.base.OneToOneFeatureMixin.html -
zero_one_loss — scikit-learn 1.7.2 docume...
1 ], [ 1 , 1 ]]), np . ones (( 2 , 2...zero_one_loss >>> y_pred = [ 1 , 2 , 3 , 4 ] >>> y_true...scikit-learn.org/stable/modules/generated/sklearn.metrics.zero_one_loss.html -
ParameterSampler — scikit-learn 1.7.2 doc...
'a' : 1 }, ... { 'b' : 0.923223 , 'a' : 1 }, ......'b' : 1.878964 , 'a' : 2 }, ... { 'b' : 1.038159...scikit-learn.org/stable/modules/generated/sklearn.model_selection.ParameterSampler.html