Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1171 - 1180 of 2,955 for 1 (0.12 sec)

  1. root_mean_squared_log_error — scikit-learn 1.7....

    Added in version 1.4. Parameters : y_true array-like...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_log_error.html
    Thu Jul 03 11:42:06 UTC 2025
      107.7K bytes
      Cache
     
  2. Support Vector Regression (SVR) using linear an...

    1.1 ), ncol = 1 , fancybox = True , shadow..., C = 100 , gamma = 0.1 , epsilon = 0.1 ) svr_lin = SVR ( kernel...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
    Thu Jul 03 11:42:05 UTC 2025
      97.7K bytes
      Cache
     
  3. XMLによる検索結果の出力

    1 11.0 10.3 10.2 10.1 10.0 9.4 9.3 9.2 9.1 9.0 8.0 7.0...13.3 13.2 13.1 13.0 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.4...
    fess.codelibs.org/ja/4.0/user/xml-response.html
    Sun Jun 22 07:56:38 UTC 2025
      39.7K bytes
      18 views
      Cache
     
  4. Decision boundary of semi-supervised classifier...

    = { - 1 : ( 1 , 1 , 1 ), 0 : ( 0 , 0 , 0.9 ), 1 : ( 1 , 0 , 0...() - 1 , X [:, 0 ] . max () + 1 y_min , y_max = X [:, 1 ] . min...
    scikit-learn.org/stable/auto_examples/semi_supervised/plot_semi_supervised_versus_svm_iris.html
    Thu Jul 03 11:42:05 UTC 2025
      102.1K bytes
      Cache
     
  5. Iso-probability lines for Gaussian Processes cl...

    1 , ( 1e-5 , np . inf )) * DotProduct ( sigma_0 = 0.1 ) **...( 0 , 1 ) plt . plot ( X [ y <= 0 , 0 ], X [ y <= 0 , 1 ], "r."...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_isoprobability.html
    Thu Jul 03 11:42:05 UTC 2025
      105.9K bytes
      Cache
     
  6. Decision Boundaries of Multinomial and One-vs-R...

    1.5 ], [ 5 , - 1 ]] X , y = make_blobs ( n_samples = 1_000...centered around [-5, 0], [0, 1.5], and [5, -1]. After generation, we...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html
    Thu Jul 03 11:42:06 UTC 2025
      110.7K bytes
      Cache
     
  7. Permutation Importance vs Random Forest Feature...

    unknown_value =- 1 , encoded_missing_value =- 1 ) numerical_pipe...'use_encoded_value' unknown_value -1 encoded_missing_value -1 min_frequency None...
    scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html
    Thu Jul 03 11:42:05 UTC 2025
      195.3K bytes
      Cache
     
  8. 2.9. Neural network models (unsupervised) — sci...

    \[\sigma(x) = \frac{1}{1 + e^{-x}}\] 2.9.1.3. Stochastic Maximum...for digit classification 2.9.1.1. Graphical model and parametrization...
    scikit-learn.org/stable/modules/neural_networks_unsupervised.html
    Thu Jul 03 11:42:05 UTC 2025
      40.1K bytes
      Cache
     
  9. Normal, Ledoit-Wolf and OAS Linear Discriminant...

    n_features_range = range ( 1 , n_features_max + 1 , step ) for n_features...n_samples = n_samples , n_features = 1 , centers = [[ - 2 ], [ 2 ]])...
    scikit-learn.org/stable/auto_examples/classification/plot_lda.html
    Thu Jul 03 11:42:05 UTC 2025
      99.4K bytes
      Cache
     
  10. Post-hoc tuning the cut-off point of decision f...

    0001 C 1.0 fit_intercept True intercept_scaling 1 class_weight...tuned_model_coef . boxplot ( ax = ax [ 1 ]) ax [ 1 ] . set_title ( "Tuned model"...
    scikit-learn.org/stable/auto_examples/model_selection/plot_tuned_decision_threshold.html
    Thu Jul 03 11:42:05 UTC 2025
      136.2K bytes
      Cache
     
Back to top