Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1171 - 1180 of 3,454 for 1 (0.14 sec)

  1. Comparing different clustering algorithms on to...

    "connectivity matrix is [0-9]{1,2}" + " > 1. Completing it to avoid...= n_samples , cluster_std = [ 1.0 , 2.5 , 0.5 ], random_state...
    scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
    Mon Dec 30 22:42:21 UTC 2024
      126.5K bytes
      Cache
     
  2. Face completion with a multi-output estimators ...

    shape [ 1 ] # Upper half of the faces X_train...X_train = train [:, : ( n_pixels + 1 ) // 2 ] # Lower half of the faces...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_multioutput_face_completion.html
    Mon Dec 30 22:42:21 UTC 2024
      99.6K bytes
      Cache
     
  3. Faces recognition example using eigenfaces and ...

    1 )[ - 1 ] true_name = target_names...y_test [ i ]] . rsplit ( " " , 1 )[ - 1 ] return "predicted: %s \n...
    scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
    Mon Dec 30 22:42:21 UTC 2024
      113.6K bytes
      Cache
     
  4. SVM: Separating hyperplane for unbalanced class...

    clusters of random points n_samples_1 = 1000 n_samples_2 = 100 centers...2.0 , 2.0 ]] clusters_std = [ 1.5 , 0.5 ] X , y = make_blobs (...
    scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html
    Mon Dec 30 22:42:21 UTC 2024
      94.5K bytes
      Cache
     
  5. SGD: Maximum margin separating hyperplane — sci...

    linspace ( - 1 , 5 , 10 ) yy = np . linspace ( - 1 , 5 , 10 ) X1...= p [ 0 ] levels = [ - 1.0 , 0.0 , 1.0 ] linestyles = [ "dashed"...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html
    Mon Dec 30 22:42:21 UTC 2024
      91.3K bytes
      Cache
     
  6. SVM-Anova: SVM with univariate feature selectio...

    score_stds = list () percentiles = ( 1 , 3 , 6 , 10 , 15 , 20 , 30 ,...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_anova.html
    Mon Dec 30 22:42:21 UTC 2024
      96.1K bytes
      Cache
     
  7. 3.2. Tuning the hyper-parameters of an estimato...

    loguniform(1, 100) can be used instead of [1, 10, 100] . Mirroring...reference to the literature. 3.2.1. Exhaustive Grid Search # The...
    scikit-learn.org/stable/modules/grid_search.html
    Mon Dec 30 22:42:21 UTC 2024
      129.2K bytes
      Cache
     
  8. get_routing_for_object — scikit-learn 1.6.0 doc...

    Added in version 1.3. Parameters : obj object If...
    scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.get_routing_for_object.html
    Mon Dec 30 22:42:21 UTC 2024
      108.7K bytes
      Cache
     
  9. Cross-validation on diabetes Dataset Exercise —...

    alphas [ - 1 ]]) (np.float64(0.0001), np.f...print ( "[fold {0} ] alpha: {1:.5f} , score: {2:.5f} " . format...
    scikit-learn.org/stable/auto_examples/exercises/plot_cv_diabetes.html
    Mon Dec 30 22:42:21 UTC 2024
      100.3K bytes
      Cache
     
  10. incr_mean_variance_axis — scikit-learn 1.6.0 do...

    (array([1.3..., 0.1..., 1.1...]), array([8.8..., 0.1..., 3.4...]),...array ([ 0 , 1 , 2 , 2 ]) >>> data = np . array ([ 8 , 1 , 2 , 5 ])...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.incr_mean_variance_axis.html
    Mon Dec 30 22:42:21 UTC 2024
      111.8K bytes
      Cache
     
Back to top