Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1111 - 1120 of 3,487 for 1 (0.08 sec)

  1. sklearn.ensemble — scikit-learn 1.5.2 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Fri Nov 01 07:27:40 UTC 2024
      120K bytes
      Cache
     
  2. gen_batches — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub gen_batches # sklearn.utils. gen_batches ( n , batch_size , * , min_...
    scikit-learn.org/stable/modules/generated/sklearn.utils.gen_batches.html
    Fri Nov 01 07:27:38 UTC 2024
      107.1K bytes
      Cache
     
  3. 10. Common pitfalls and recommended practices —...

    n_features = 1 , noise = 1 ) >>> X_train , X_test ,...applies to using None . 10.3.1.1. Estimators # Passing instances...
    scikit-learn.org/stable/common_pitfalls.html
    Fri Nov 01 07:27:40 UTC 2024
      101.4K bytes
      Cache
     
  4. Gaussian process classification (GPC) on iris d...

    y ) kernel = 1.0 * RBF ([ 1.0 , 1.0 ]) gpc_rbf_anisotropic...() - 1 , X [:, 0 ] . max () + 1 y_min , y_max = X [:, 1 ] . min...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html
    Fri Nov 01 07:27:39 UTC 2024
      94.1K bytes
      Cache
     
  5. Classification of text documents using sparse f...

    the mean squared error on {-1, 1} encoded targets, one for each...n_features: { X_train . shape [ 1 ] } " ) print ( f "vectorize testing...
    scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html
    Fri Nov 01 07:27:41 UTC 2024
      152.7K bytes
      Cache
     
  6. Comparing different clustering algorithms on to...

    "connectivity matrix is [0-9]{1,2}" + " > 1. Completing it to avoid...= n_samples , cluster_std = [ 1.0 , 2.5 , 0.5 ], random_state...
    scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
    Fri Nov 01 07:27:40 UTC 2024
      120.8K bytes
      Cache
     
  7. Face completion with a multi-output estimators ...

    shape [ 1 ] # Upper half of the faces X_train...X_train = train [:, : ( n_pixels + 1 ) // 2 ] # Lower half of the faces...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_multioutput_face_completion.html
    Fri Nov 01 07:27:39 UTC 2024
      94.7K bytes
      Cache
     
  8. SVM: Separating hyperplane for unbalanced class...

    clusters of random points n_samples_1 = 1000 n_samples_2 = 100 centers...2.0 , 2.0 ]] clusters_std = [ 1.5 , 0.5 ] X , y = make_blobs (...
    scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html
    Fri Nov 01 07:27:40 UTC 2024
      89.5K bytes
      Cache
     
  9. Faces recognition example using eigenfaces and ...

    1 )[ - 1 ] true_name = target_names...y_test [ i ]] . rsplit ( " " , 1 )[ - 1 ] return "predicted: %s \n...
    scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
    Fri Nov 01 07:27:40 UTC 2024
      108.8K bytes
      Cache
     
  10. SGD: Maximum margin separating hyperplane — sci...

    linspace ( - 1 , 5 , 10 ) yy = np . linspace ( - 1 , 5 , 10 ) X1...= p [ 0 ] levels = [ - 1.0 , 0.0 , 1.0 ] linestyles = [ "dashed"...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html
    Fri Nov 01 07:27:40 UTC 2024
      85.9K bytes
      Cache
     
Back to top