- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1101 - 1110 of over 10,000 for 1 (0.26 seconds)
-
HistGradientBoostingClassifier — scikit-l...
that categorical values of 1.0 and 1 are treated as the same category....integer values: 1: monotonic increase 0: no constraint -1: monotonic...scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html -
StandardScaler — scikit-learn 1.8.0 docum...
( data )) [[-1. -1.] [-1. -1.] [ 1. 1.] [ 1. 1.]] >>>...0 , 0 ], [ 0 , 0 ], [ 1 , 1 ], [ 1 , 1 ]] >>> scaler...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html -
TimeSeriesSplit — scikit-learn 1.8.0 docu...
array ([[ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [...index=[0] Test: index=[1] Fold 1: Train: index=[0 1] Test: index=[2]...scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html -
ElasticNetCV — scikit-learn 1.8.0 documen...
l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1 , the...(i.e. Ridge), as in [.1, .5, .7, .9, .95, .99, 1] . eps float, default=1e-3...scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html -
compute_optics_graph — scikit-learn 1.8.0...
1.41, 1.41, 1. , 1. , 4.12]) >>>...min_samples int > 1 or float between 0 and 1 The number of samples...scikit-learn.org/stable/modules/generated/sklearn.cluster.compute_optics_graph.html -
MiniBatchDictionaryLearning — scikit-lear...
1 ( U , V ) with || V_k || _2 <= 1 for all 0 <=...heuristics. Added in version 1.1. fit_algorithm {‘lars’, ‘cd’},...scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning.html -
PowerTransformer — scikit-learn 1.8.0 doc...
data )) [[-1.316 -0.707] [ 0.209 -0.707] [ 1.106 1.414]] fit (...= ( X * lambda_ + 1 ) ** ( 1 / lambda_ ) - 1 elif X < 0 and...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html -
SparseCoder — scikit-learn 1.8.0 document...
1 , 0 ], ... [ - 1 , - 1 , 2 ], ... [ 1 , 1 , 1 ], ......>>> X = np . array ([[ - 1 , - 1 , - 1 ], [ 0 , 0 , 3 ]]) >>>...scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparseCoder.html -
Lasso — scikit-learn 1.8.0 documentation
1 ) >>> clf . fit ([[ 0 , 0 ], [ 1 , 1 ], [ 2...2 , 2 ]], [ 0 , 1 , 2 ]) Lasso(alpha=0.1) >>> print (...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html -
PassiveAggressiveRegressor — scikit-learn...
deprecated in version 1.8 and will be removed in 1.10. Instead use:...PassiveAggressiveReg ( * , C = 1.0 , fit_intercept = True , max_iter...scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html